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Pref ace to the second edition 

The practice of medical statist ics has changed considerably since the first edition 
was written. At that time the age of the personal computer was just beginning, and 
serious statistical ana lyses were conducted by specialist statisticians using main
frame computers. Now, there is ready access to statistical computing-even the 
most sophisticated stat ist ical analyses can be done using a personal computer. 
This has been accompanied by the growth of the evidence-based medicine move
ment and a commitment of medical journals to improve the statistical rigour of 
papers they publish. 

These changes mean that the boundary between what used to be considered 
'basic' or 'essential' statist ics and more advanced methods has been blurred. 
A statistical analysis presented in a leading general medical journal is more l ikely 
to use logistic regression (formerly considered a specialist technique) than to 
present results from x2 tests. In this second ed ition we describe the most com
monly used regression models-multiple l inear regression, logistic regression, 
Poisson regression and Cox regression-and explain how these include many 
basic methods as special cases. By including chapters on general issues in regres
sion modelling, interpretation of analyses and likelihood, we aim to present a 
unified view of medical statistics and statistical inference, and to renect the shift in 
emphasis in modern medical statist ics from hypothesis testing to estimation. Other 
new chapters introduce methods, some relatively new, that allow common prob
lems in statistical analysis to be addressed; these include meta-analysis, bootstrap
ping, robust standard errors, and analysis of clustered data. 

Our aim throughout has been to retain the strengths of the first edition, by 
keeping the emphasis on enabling the reader to know which method to apply 
when. We have therefore structured the book into parts relating to the analysis of 
different types of outcome variable, and included new chapters on l inking analysis 
to study design, measures of association and impact, and general strategies for 
analysis. 

A number of the larger datasets used in the chapters on regression modelling are 
available for downloading from the book's website (www. blackwellpublishing. 
com/essentialmedstats), to allow readers to reproduce the analyses presented or 
try out further analyses for themselves . Readers are also invited to visit the websi te 
to check for corrections and updates and to give feedback, which we welcome. 



viii Preface to the second edition 

In writing this second ed ition, we have benefited from advice and support from 
many colleagues, students and friends. In particular, we would l ike to thank the 
many readers who gave feedback on the first edition and inspired us to embark on 
this, Cesar Victora, Kate Till ing and Simon Cousens for so wil l ingly commenting 
on early drafts in detail ,  David Clayton and M ichael Hi l ls for generous advice and 
unstinting help on many occasions, George Davey Smith for helpful comments on 
a number of draft chapters and the late Paul Arthur for his enduring encourage
ment and advice. We would like to express our appreciation to Christopher B aum, 
James Carpenter, Matthias Egger, Stephen Frankel, David Gunnell, Richard 
Hayes, Sharon Huttly, M ike Kenward, Peter McCarron, Roger Newson, Steven 
Oliver, Andrew Polmear, B ianca de Stavola, and Lesley Wood for helpful d iscus
sions and for sharing their i nsights into statistical issues. We are grateful to James 
Carpenter, Erik Christensen, Shah Ebrahim, Alison Elliot, R ichard Hayes, David 
Kessler, Carl-Johan Lamm, Debbie Lawlor, Steven Oliver, Mary Penny, Seif 
Shaheen and B ianca de Stavola, who generously provided datasets for use as 
examples. We would also l ike to thank Maggie Rae and Alan Haworth, whose 
generous hospitality faci l i tated much writing, and last but not least H arriet Aston, 
Emily, Kitty and Max Sterne, Alex Khot, and Sam and Daisy Kirkwood, for their 
support and the d ifference they make in our l ives. 

Betty Kirkwood 
Jonathan Sterne 



Pref ace to the first edition 

The aim in writing this book has been to put the multitude of statistical methods 
applicable to medical research into their practical context, and in  doing this I hope 
I have combined simplicity with depth. I have adopted a somewhat d ifferent 
ordering of topics than found in most books, based on a logical progression of 
practical concepts, rather than a formal mathematical development .  Statistical 
ideas are introduced as and when needed, and all methods are described in the 
context of relevant examples drawn from real situations. There is extensive cross
referencing to l ink and contrast the alternative approaches which may apply in 
similar situations. In this way the reader is led more quickly to the analysis of 
practical problems and should find i t  easier to learn which procedures are appl ic
able and when. 

This book is suitable for self-instruction, as a companion to lecture courses on 
medical statistics, and as a reference text. It covers al l topics which a medical 
research worker or student is l ikely to encounter. Some advanced (or uncommon ) 
methods are described only briefly, and the reader referred to more specialist 
books. It is hoped, however, that i t  will be a rare event to look for a topic in the 
index, and not to find even a mention. All formulae are clearly highlighted for easy 
reference, and there is a useful summary of methods on the inside front  and back 
covers. 

The book is a concise and stra ightforward introduction to the basic methods 
and ideas of medical statist ics. It does not, however, stop here. It is intended also 
to be a reasonably comprehensive guide to the subject. For anyone seriously 
involved in statist ical applications, it is not sufficient just to be able to carry out ,  
for example, a t  test .  It is  a lso important to appreciate the l imitations of the simple 
methods, and to know when and how they should be extended. For this reason ,  
chapters have been included on, fo r  example, analysis o f  variance and multiple 
regression. When dealing with these more advanced methods the treatment con
centrates on the principles involved and the interpretation of results, since with the 
wide availability of computing faci l ities it is no longer necessary to acquire 
familiarity with the details of the calculations. The more advanced sections may 
be omitted at a first reading, as ind icated at the relevant points in the text .  It is 
recommended, however, that the introductions of all chapters are read, as these 
put the d ifferent methods into context. 



x Preface to the first edition 

The reader wil l also find such topics as trend tests for contingency tables, 
methods of standardization, use of transformations, survival analysis and case
control studies. The last quarter of the book is devoted to issues involved in the 
design and conduct of investigations. These sections are not divorced in  any way 
from the sections on methods of analysis and renect the importance of an aware
ness of statistics throughout the execution of a study. There is a detailed summary 
of how to decide on an appropriate sample size, and an introduction to the use of 
computers, with much of the common jargon explained. 

This book has been compiled from several years' experience both of teaching 
statistics to a variety of medical personnel and of collaborative research. I hope 
that the approach I have adopted will appeal to anyone working in or associated 
with the field of medical research, and will please medical workers and statisticians 
alike. In particular, I hope the result will answer the expressed need of many that 
the problem in carrying out statistical work is not so much learning the mechanics 
of a particular test, but rather knowing which method to apply when. 

I would l ike to express my gratitude to the many colleagues, students, and 
friends who have assisted me in this task. In particular, I would like to thank 
David Ross and Cesar Victora for will ingly reading early drafts and commenting 
in  great detai l ,  Richard Hayes for many discussions on teaching over the years, 
Laura Rodrigues for sharing her insight into epidemiological methodology with 
me, Peter Smith for comments and general support, Helen Edwards for patient 
and skil led help with the typing, and Jacqui Wright for assistance in  compiling the 
appendix tables. I would also l ike to thank my husband Tom Kirkwood not only 
for comments on many drafts, endless discussions and practical help, but also for 
providing unfail ing support and encouragement throughout .  I t  is to him this book 
is dedicated . Finally, I would l ike to mention Daisy and Sam Kirkwood, whose 
birth, although delaying the finalization of an almost complete manuscript, pro
vided me with an opportunity to take a fresh look at what I had written and make 
a number of major improvements. 

Betty Kirkwood 



I 
PART A 

BASICS 

Statistics is the science of collecting, sumrnanzmg, present ing and interpreting 
data, and of using them to estimate the magnitude of associations and test 
hypotheses. It has a central role in medical investigations. Not only does i t  provide 
a way of organizing information on a wider and more formal basis than relying on 
the exchange of anecdotes and personal experience, i t  takes into account the 
intrinsic variation inherent in most biological processes. For example, not only 
does blood pressure differ from person to person, but in the same person i t  also 
varies from day to day and from hour to hour. It is the interpretation of data in 
the presence of such variabil ity that l ies at the heart of statistics. Thus, in  investi
gating morbidity associated with a particular stressful occupation, statistical 
methods would be needed to assess whether an observed average blood pressure 
above that of the general population could simply be due to chance variations or 
whether it represents a real indication of an occupational health risk. 

Variabil ity can also arise unpredictably (randomly) within a population. Indi
viduals do not al l react in the same way to a given stimulus. Thus, although 
smoking and heavy drinking are in general bad for the health, we may hear of a 
heavy smoker and drinker living to healthy old age, whereas a non-smoking 
teetotaller may die young. As another example, consider the evaluation of a new 
vaccine. Individuals vary both in their responsiveness to vaccines and in their 
susceptibil ity and exposure to disease. Not only will some people who are unvac
cinated escape infection, but also a number of those who are vaccinated may 
contract the d isease. What can be concluded if the proportion of people free from 
the disease is greater among the vaccinated group than among the unvaccinated? 
How effective is  the vaccine? Could the apparent effect j ust be due to chance? Or, 
was there some bias in the way people were selected for vaccination, for example 
were they of different ages or social class, such that their baseline risk of contract
i ng the disease was already lower than those selected into the non-vaccinated 
group? The methods of statistical analysis are used to address the first two of 
these questions, while the choice of an appropriate design should exclude the th ird . 
This example i l lustrates that the usefulness of statistics is not confined to the 
analysis of results .  It also has a role to play in the design and conduct of a study. 

In this first part of the book we cover the basics needed to understand data and 
commence formal statistical analysis. In Chapter I we describe how to use the 
book to locate the statistical methods needed in d i fferent situations, and to 
progress from basic techniques and concepts to more sophisticated analyses. 



2 Part A: Basics 

Before commencing an analysis it is essential to gain an understanding of the data. 
Therefore, in Chapter 2 we focus on defini ng the data, explaining the concepts of 
populations and samples, the structure of a dataset and the different types of 
variables that it may contain, while in Chapter 3 we outl ine techniques for 
displaying and tabulating data. 



C H A PTE R 1 

Using this book 

1.1 Introduction 1.5 Understanding the l inks between study 

1 .2  Getting started (Part A)  design, analysis and interpretation (Part F) 

1 .3 Finding the right statistical 1.6 Trying out our examples 

method (Parts B-0) 1.7 This book and evidence-based 

1.4 Going further (Part E) medicine 

1 . 1 I N T R O D U CTI O N  

People usually pick u p  a statistics book when they have data to analyse, or when 
they are doing a course. This has determined the structure of this book . The 
ordering of topics is based on a logical progression of both methods and practical 
concepts, rather than a formal mathematical development. Because different 
statistical methods are needed for different types of data, we start by describing 
how to define and explore a dataset ( rest of Part A). The next three parts (B, C 
and D) then outl ine the standard statistical approaches for the three main types of 
outcome variables (see Section 1 . 3 ) .  Statist ical ideas are introduced as needed, 
methods are described in the context of relevant examples drawn from real 
s i tuations, and the data we have used are available for you to reproduce the 
examples and try further analyses (see Section 1 .6 ) .  In Part E, we introduce a 
collection of more advanced topics, which build on common themes in Parts B to 
D. These are beyond the scope of most introductory texts. The final part of 
the book ( Part F) is devoted to issues involved in the design and conduct of a 
study, and how to develop an analysis strategy to get the best out of the data 
collected. 

This book is intended to appeal to a wide audience, and to meet several needs. 
It is a concise and stra ightforward introduction to the basic methods and ideas of 
medical statist ics, and as such is suitable for self-instruction, or as a companion to 
lectu re courses. I t  does not requ ire a mathematical background. However, it is 
not j ust an introductory text .  I t  extends well beyond this and aims to be a 
comprehensive reference text for anyone seriously involved in statistical analysis. 
Thus i t  covers the major topics a medical research worker, epidemiologist or 
medical statist ician is l ikely to encounter when analysing data, or when reading 
a scientific paper. When dealing with the more advanced methods, the focus is  on 
the principles involved, the context in which they are required and the i nterpret
ation of computer outputs and results, rather than on the statistical theory behind 
them. 



4 Chapter 1: Using this book 

1 . 2 G E TT I N G  S T A R T E D  ( P A R T  A)  

The other chapters i n  Part A deal with the basics of  gett ing to  know your data. I n  
Chapter 2 ('Defining the data') we explain the l ink between populations and 
samples, and describe the different types of variables, while i n  Chapter 3 we 
outline simple techniques for tabulating and displaying them. 

In particular, we i ntroduce the distinction between exposure variables or risk 

factors ( that is  variables which influence disease outcomes, including medical 
treatments) and outcome variables (the variables whose variation or occurrence 
we are seeking to understand) . Assessing the size and strength of the influence of 
one or more exposure variables on the outcome variable of interest is  the core issue 
that runs throughout this book, and is at the heart of the majority of statistical 
i nvestigations. 

1 . 3 F I N D I N G  T H E  R I G H T STAT I S T I CA L  M ET H O D  ( P A R T S  B- D )  

The appropriate statistical methods to use depend o n  the nature o f  the outcome 
variable of in terest .  Types of outcome variables are described in detail in Chapter 
2;  they may be essentially one of three types: 
1 Numerical outcomes, such as birthweight or cholesterol leve l .  
2 Binary outcomes, summarized as  proportions, risks or odds, such as  the pro

portion of children diagnosed with asthma, the proportion of patients in each 
treatment group who are no longer hypertensive, or the risk of dying in the first 
year of l i fe .  

3 Rates of mortality, morbidity or survival measured longi tudinally over time, 
such as the survival rates fol lowing different treatments for breast cancer, or the 
number of episodes of diarrhoea per person per year among AIDS patients .  
Parts B, C and D comprehensively cover the full range of standard methods for 

these three types of outcome respectively, and will be sufficient for the majority of 
analysis requirements. The emphasis throughout is on how to choose the right 
method for the required analysis, how to execute the method and how to interpret 
the resul ts from the computer output. A quick guide to the appropriate statistical 
methods for the analysis of the different types of outcome variable is included on 
the inside covers. 

The key concepts underlying statistical methods are all introduced in Part B in the 
context of analysing numerical outcomes, but they apply equally to all the statistical 
methods in the book. Statist ics is used to evaluate the association between an 
exposure variable and the outcome of interest .  More specifically, i t  is used to 
measure this association in the data collected from the particular sample of individ
uals i n  our study and to make inferences about its l ikely size and strength in  the 
population from which the sample was derived. In Chapter 6, we introduce the use 
of a confidence interval, to give a range of values within which the size of the 
association in  the population is l ikely to lie, taking into account  sampling variation 

and standard error, which reflect the inherent variation between individuals. 



1.5: Understanding the links between study design, analysis and interpretation 5 

Hypothesis tests (also known as significance tests) and P-values, in troduced in  
Chapter 7, are used to  assess the strength of  the evidence against the  null hypothesis 

that there is no true association in the population from which the sample was drawn. 
The methods in these three core parts of the book range from simple techniques 

such as t-tests or chi-squared tests for comparing two exposure groups, to the use 
of regression models for examining the effect of several exposure variables. 
Throughout we aim to show how these regression models arise as natura l  exten
sions to the simpler methods. These more sophisticated analyses are no longer the 
preserve of the trained statistician . They are widely available in statist ical software 
packages and can be used by anyone with a desktop or notebook/laptop com
puter, and a moderate level of computer expertise. The more advanced sections can 
be omitted at a first reading, as indicated at the relevant points in the text. It i s  
recommended, however, that the introductions of a l l  chapters be read, as  these put 
the different methods into context. 

1 . 4 G O I N G  F U RT H E R  ( P A RT E )  

Parts B ,  C and D comprehensively cover the full range o f  standard methods for the 
three types of outcome variables. This range of methods will be sufficient for the 
majority of analysis requirements .  Part E is for those who wish to go further, and to 
understand general issues in statistical modell ing. I t  can be omitted unt i l  needed . 

I n  Part E we explain the idea of likelihood, upon which most statistical methods 
are based, discuss generic issues in regression modell ing, so that ski l ls learned in 
applying one type of regression model can be applied directly to the others, and 
describe methods that al low us to relax the assumptions made in standard statistical 
methods. We also include chapters for two specialised areas of analysis. The first is 
the analysis of clustered data, which arise, for example, in cluster-randomized trials 
where communities, rather than individuals, are randomized to receive the inter
vention or to act as control .  The second is on systematic reviews and meta-analyses, 

which synthesize findings from several independent studies .  Finally, we i nclude a 
brief overview of the Bayesian approach to statistical inference. 

I n  these more advanced chapters our emphasis is on a practical approach, 
focussing on what the reader needs to know to conduct such analyses, and what 
i s  needed to critically appraise their reporting in  scient ific papers. However, we 
recommend that only the introductions of the chapters be attempted at first 
reading. The detail can be omitted and used only when the necessity arises, and/ 
or the reader has acquired experience of basic regression modell ing. 

1 . 5 U N D E R STA N D I N G  T H E  L I N K S  B ETW E E N  STU D Y  D E S I G N , 
A N A LY S I S  A N D  I NTE R P R ETATI O N  ( P A RT F )  

The results of  a study are only as  good as  the data on  which they are based. Part F 
addresses the l inks between study design, analysis and interpretation. I t  starts by 
explaining how to choose the right analysis for each of the main types of study 



6 Chapter 1: Using this book 
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design. I t  then describes how to choose an appropriate sample size, the effects of 
measurement error and misclassification, and the different ways in which associ
ations can be measured and interpreted. 

Finally, it is essential to plan and conduct statistical analyses in a way that 
maximizes the quality and interpretability of the findings. In a typical study, data 
are collected on a large number of variables, and i t  can be difficult to decide which 
methods to use and in what order. In Part F we aim to navigate you through this, 
by describing how to plan and conduct an analysis. Time invested here before you 
start pays off. Mi l l ions of t rees must have been sacrificed to unplanned data 
analyses, where the data were looked at in  every way imaginable. Equally often, 
gaps in analyses are discovered when the analyst tries to present the results . In  fact 
it is not u ncommon for people to find themselves going back to the drawing board 
at this stage. Careful planning of analyses should avoid these frustrations. 

Of course, the issues discussed in Part F will affect all stages of the analysis of a 
study. This is i l lustrated in Figure I . I ,  which shows how this book is organized. 

1 . 6  TR Y I N G  O UT O U R  E X A M P L E S  

Almost al l  statistical analyses are now done using computers, and a l l  b u t  very large 
datasets ( those with measurements made on hundreds of thousands of individuals) 
can now be analysed using standard (desktop or laptop) office or home computers. 
Although simple analyses can be done with a hand-held calculator, even for these 
the use of a computer is recommended because results will be produced more 
qu ickly and be more accurate. For more complex analyses it is essential to use 
computers. Computers also allow production of high quality graphical displays. 



1 .  7 This book and evidence-based medicine 7 

For these reasons, we have conducted all analyses in this book using a computer. 
We have done these using the statistical package Sta ta (Sta ta Corporat ion, College 
Station , TX, USA; see www.stata.com). For simple analyses, we have included raw 
data where possible to enable readers to try out our examples for themselves. Most 
regression analyses presented in this book are based on datasets that are available 
for downloading from the book's web site, at www.blackwel lpublishing.com/ 
EssentialMedStats. Readers may wish to use these datasets either to check that they 
can reproduce the analyses presented in the book, or to practice further ana lyses. 

In general ,  hand-held calculators do not provide facil ities to perform a large 
enough range of statist ical analyses for most purposes. In particular, they do not 
a llow the storage of data or analysis commands that are needed to make sure that 
an analysis can be reproduced (see Chapter 38 ) .  However, calculators are useful 
for quick calculations and checking of results (both one's own and those in 
scient ific papers) .  The minimum requirements are keys for scient i fic functions 
(such as square root and logarithm) and at least one memory. The new generation 
of handheld computers and personal organizers is blurring the distinction between 
calculators and computers, and it is l ikely that statistical software for such devices 
will become available in the future. 

1 . 7 T H I S  B O O K  A N D  E V I D E N C E - B A S E D  M E D I C I N E  

As discussed above, statist ics is the science of collecting, summarizing, presenting 
and interpreting data, and of using them to estimate the size and strengths of 
associations between variables. The core issue in medical statistics is how to assess 
the size and strength of the influence of one or more exposure variables ( risk 
factors or treatments) on the outcome variable of interest (such as occurrence of 
disease or survival ) .  In particular i t  aims to make inferences about this influence 
by studying a selected sample of individuals and using the results to make more 
general inferences about the wider population from which the sample was drawn . 

The approach of evidence-based medicine is l ike a mirror to this . I n ferences are 
made the other way around; by appraising the evidence based on the average effect 
of a treatment (or exposure) assessed on a large number of people, and j udging its 
relevance to the management of a particular patient. More specifically, practi t ion
ers need to ask themselves what to consider before they can assume that the genera l 
finding wil l  apply to a particular patient .  For example, does the patient share 
the same characteristics as the group from which the evidence was gathered, such 
as age, sex, ethnic group, social class and the profile of related risk factors, such as 
smoking or obesity? 

The evidence that the practitioner needs to appraise may come from a single 
study or, increasingly, from a systematic review of many. There has been an 
explosion in research evidence in recen t  decades: over two mil lion articles are 
published annually in the biomedical l i terature and it is common for important 
issues to be addressed in several studies. Indeed, we might be reluctant to introduce 
a new treatment based on the result of one trial alone. A systematic review, or 
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overview, of the l i terature is a 'systematic assembly, critical appraisal and synthesis 
of all relevant  studies on a specific topic'. The statistical methods for combining the 
results of a number of studies are known as meta-analysis. I t  should be emphasized 
that not all systematic reviews will con tain a meta-analysis: this depends on the 
systematic review having located studies which are sufficiently similar that it is 
reasonable to consider combining their results . The increase in interest in meta
analysis is i l lustrated by the fact that while in 1 987 there were 25 MEDLINE 
citations using the  term 'meta-analysis' ;  this had increased to  around 380 by  1 99 1  
and around 580 by 200 I .  

The majority of practitioners are concerned with using and appraising this 
evidence base, whereas the main focus of this book is on how to conduct the 
statist ica l  analyses of studies that contribute to the evidence base. There are 
several excel lent special ized evidence-based medicine books that lay out the issues 
in critically appraising a scientific paper or systematic review. We have therefore 
decided to refer the reader to these, rather than including a detailed d iscussion of 
critical appraisal in  this book. We recommend Crombie ( 1 996), Clarke and Croft 
( 1 998), Si lagy and Haines ( 1 998), Greenhalgh (2000) and Sackett et al. (2000). 

The parts of this book that are particularly relevant to those practising evi
dence-based medicine are Chapters 32, 34 and 37. Thus in Chapter 32 on 'System
atic reviews and meta-analysis', we include a discussion of the sources of bias in 
meta-analysis and how these may be detected . In  Chapter 34 we briefly review the 
most important aspects of the quality of randomized controlled trials. In Chapter 
37 we describe the various different 'Measures of association and impact' and how 
to interpret them. These include numbers needed to treat or harm as well as risk 
ratios, odds ratios, attributable risks and absolute risk reductions. In addition, this 
book wil l  be a useful companion for any practitioner who, as wel l  as appraising 
the quality and relevance of the evidence base, wishes to understand more about 
the statistics behind the evidence generated. 
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2 . 1  P O P U LA T I O N S  A N D  S A M P L E S  

Variables based o n  threshold values 

Variables derived from reference curves, 

based on standard population values 

Transformed variables 

2.4 Distinguishing between outcome 

and exposure variables 

Except when a ful l  census is taken, we collect data on a sample from a much larger 
group called the population. The sample is of interest not in its own right, but for 
what it tells the investigator about the population. Statistics al lows us to use the 
sample to make inferences about the population from which it was derived, as 
i l lustra ted in Figure 2 . 1 .  Because of chance, d ifferent samples from the population 
will give different results and this must be taken into account when using a sample to 
make inferences about the populat ion . This phenomenon, called sampling variation, 

lies at the heart of statistics. I t  is described in detail in Chapter 4. 
The word 'population' is used in statistics in a wider sense than usual .  It i s  not 

limited to a population of people but can refer to any collection of objects. For 

Population 

Statistics 

Sam ple 
Fig. 2 . 1  Diagram to show the role of statistics i n  using information from a sample to make inferences about 

the population from which the sample was derived. 
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example, the data may relate to a sample of 20 hospitals from the population of 
all hospitals in the country. In such a case it is easy to imagine that the entire 
population can be l isted and the sample selected directly from i t .  I n  many 
instances, however, the population and its boundaries are less precisely specified, 
and care must be taken to ensure that the sample truly represents the population 
about which in formation is required . This population is sometimes referred to as 
the target population. For example, consider a vaccine trial carried out using 
student volunteers. If it is reasonable to assume that in  their response to 
the vaccine and exposure to disease students are typical of the conunun i ty at 
large, the results wil l have general applicabil ity. If, on the other hand, students 
differ in  any respect which may materially affect their response to the vaccine 
or exposure to d isease, the conclusions from the trial are restricted to the popula
tion of students and do not have general applicabil i ty. Deciding whether or 
not 'students are typical' is  not a statistical issue, but depends on an i nformed 
judgement taking in to account relevant biological and epidemiological 
knowledge. 

Note that the target population often includes not only all persons living at 
present but also those that may be alive at some time in  the future .  This is  the case 
in  this last example evaluating the efficacy of the vaccine. It is obvious that the 
complete enumeration of such a population is not possible. 

2 . 2  T Y P E S  OF V A R I A B L E  

The raw data of a n  investigation consist o f  observations made o n  individuals. I n  
many situations the i ndividuals are people, but they need not be. For instance, 
they might be red blood cells, urine specimens, rats, or hospitals .  The n umber of 
individuals is cal led the sample size. Any aspect of an individual that is measu red, 
like blood pressure, or recorded, l ike age or sex, is called a variable. There may be 
only one variable in a study or there may be many. For example, Table 2 . 1 shows 
the first six l ines of data recorded in a study of outcome of treatment in tubercu
losis patients t reated in  three hospitals. Each row of the table shows the data 
collected on a particular individual, while the columns of the table show the 
different variables which have been collected. 

Table 2 . 1  First six lines o f  data from a study of  outcome after diagnosis o f  tuberculosis. 

Skin test 

Date of Weight Smear Culture diameter Alive after 

Id Hospital Date of birth Sex diagnosis (kg) result result (mm) 6 months? 

001 03/1 2/1 929 M 23/08/1 998 56.3 Positive Negative 1 8  y 
002 1 3/04/1 936 M 1 2/09/1998 73.5 Positive Negative 1 5  y 
003 3 1 /1 0/1931 1 7/06/1 999 57.6 Positive Positive 2 1  N 

004 2 1 1 /1 1 11 922 05/07/1 999 65.6 Uncertain Positive 28 y 
005 2 01 /05/1946 M 20/08/1 999 81 . 1  Negative Positive 6 y 
006 3 1 8/02/1 954 M 1 7/09/1 999 56.8 Positive Negative 1 2  y 
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A first step in  choosing how best to  display and analyse data is  to  classify the 
variables into their different types, as different methods pertain to each. The main 
division is between numerical (or quantitative) variables, categorical (or qual i ta
tive) variables and rates. 

Numerical variables 

A numerical variable is either continuous or discrete. A continuous variable, as the 
name implies, is a measurement on a continuous scale. In Table 2 . 1 ,  weight is a 
continuous variable. In  contrast ,  a discrete variable can only take a l imited 
number of d iscrete values, which are usually whole numbers, such as the number 
of episodes of diarrhoea a child has had in a year. 

Binary and other categorical variables 

A categorical variable is non-numerical ,  for instance place of birth, ethnic group, 
or type of drug .  A particularly common sort is a binary variable (also known as a 
dichotomous variable), which has only two possible values. For example, sex is  
male or female, or the patient may survive or die. We should also distinguish 
ordered categorical variables, whose categories, al though non-numerical ,  can be 
considered to have a natural ordering. A common example of an ordered categor
ical variable is social class, which has a natural ordering from most deprived to 
most affluent. Table 2.2 shows the possible categories and sub-types of variable 
for each of the categorical variables in the data displayed in Table 2 . 1 .  Note that it 
could be debated whether smear result should be classified as ordered categorical 
or simply as categorical, depending on whether we can assume that "uncertain" is 
intermediate between 'negative' and 'positive'. 

Rates 

Rates of d isease are measured in follow-up studies, and are the fundamental 
measure of the frequency of occurrence of disease over time. Their analysis 
forms the basis for Part D, and their exact definition can be found there. Examples 
include the survival rates fol lowing di fferent treatments for breast cancer, or the 
number of episodes of diarrhoea/person/year among AIDS patients .  

Table 2 .2 Categorical (qualitative) variables recorded in the study of  outcome after 
diagnosis of tuberculosis. 

Variable 

Hospital 

Sex 

Smear result 

Culture result 

Alive at 6 months? 

Categories 

1, 2, 3 

Male, female 

Negative, uncertain, positive 

Negative, positive 

No, yes 

Type of variable 

Categorical 

Binary 

Ordered categorical 

Binary 

Binary 
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2 . 3  D E R I V E D  V A R I A B L E S  

Often, the variables included i n  a statistical analysis will be derived from those 
originally recorded. This may occur in a variety of different ways, and for a variety 
of reasons. 

Calculated or categorized from recorded variables 

We commonly derive a patient's age at diagnosis ( in years) by calculating the 
number of days between their date of birth and date of d iagnosis, and dividing this 
by 365 .25 ( the average number of days in a year, including leap years) .  We will 
often proceed to categorize age into age groups, for example we m ight define ten
year age groups as 30 to 39, 40 to 49, and so on. Age group is then an ordered 
categorical variable. 

Another example is  where the range of values observed for average monthly 
income is used to d ivide the sample into five equally-sized income groups (quint i les, 
see Section 3 .3 ) ,  and a new variable ' income group' created with ' l '  corresponding 
to the least affluent group in the population and '5' to the most affluent group. 

Similarly, body mass index (BMI),  which is calculated by dividing a person's 
weight (in kg) by the square of their height (in m), may be categorized into a 
5-point scale going from < 1 6  kg/1112 being malnourished to 2: 30 kg/m2 defining 
obese. In contrast to the income group variable where the categorizat ion is specific 
to the particular set of data, the categorization of the BMI scale has been carried 
out using conventionally agreed cut-off points to define the different groups. This 
type of variable, where the categorizing is based on pre-defined threshold values, is 
described in the next paragraph. 

Variables based on threshold values 

A particular group of derived variables are those based on threshold values of a 
measured variable. Two examples are given in Table 2 . 3 .  LBW is a b inary variable 
for low birth weight ( 'yes' if the baby's birth weight was below 2500 g, and 'no' i f  

Table 2 . 3  Examples o f  derived variables based o n  

threshold values. 

Derived variable 

LBW (Low birthweight): 

Yes 

No 

Vitamin A status: 

Severe deficiency 

Mild/moderate deficiency 
Normal 

Original variable 

Birthweight: 

< 2500 g 

:::: 2500 g 

Serum retinol level: 

< 0.35 µmol/I 
0.35-0.69 µmol/I 

:;:,: 0.70 µmol/I 
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the birth weight was 2500 g o r  above) .  Vitamin A status is  an  ordered categorical 
variable, derived from the serum ret inol level .  

Variables derived from reference curves, based on standard population 
values 

A more refined comparison is based on comparing the value of a variable for the 
individual with reference curves based on the average and range of val ues for 
the whole populat ion.  For example, a child's growth can be monitored by plotting 
his/her weight (and height )  against standard growth curves. This al lows not only an 
assessment of where the child's weight (or height) lays compared to the average 
child at this age, but also al lows growth fal tering to be detected, if their growth 
curve appears to be dropping below what is usually expected for a child with their 
birthweight .  How to calculate variables derived from a comparison with reference 
curves is postponed unti l Chapter 1 3  ( 'Transformations') at the end of Part B, 
since i t  requires an understanding of means, the normal distribution and .:-scores, 
all of which are covered in Part B. 

Transformed variables 

I n  some cases it may be necessary to transform a numerical variable onto another 
scale in  order to make it satisfy the assumptions needed for the relevant statist ical 
methods. The logarithmic transformation, in which the value of the variable is 
replaced by its logarithm, is by far the most frequent ly applied. I ts  use is  appro
priate for a great variety of variables including incubation periods, parasite 
counts, t itres, dose levels, concentrations of substances, and ratios. The reasons 
why a variable should be transformed, the different types of transformation, 
and how to choose between them are covered in detail in Chapter 1 3  at the end 
of part B. 

2 . 4  D I S T I N G U I S H I N G  B ET W E E N  O UTC O M E  A N D  E X P O S U R E  
V A R I A B L E S  

I n  order t o  choose appropriate data displays and statistical methods, i t  i s  very 
important to d istinguish between outcome and exposure variables, in addition to 
identifying the types of each of the variables in the data set. The outcome variable 
is the variable that is the focus of our attention, whose variation or occurrence we 
are seeking to understand. In particular we are interested in  ident ifying factors, or 
exposures, that may innuence the size or the occurrence of the outcome variable. 
Some examples are given in  Table 2.4. The purpose of a statistical ana lysis is to 
quantify the magnitude of the association between one or more exposure variables 
and the outcome variable. 

A number of different terms are used to describe exposure and outcome vari
ables, depending on the context .  These are l isted in Table 2 .5 .  In particular, in a 
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Table 2.4 Examples of outcome and exposure variables. 

Outcome variable Exposure variable 

Baby born with low birth weight (yes, no) Mother smoked during pregnancy (yes, no) 

Anthropometric status at 1 year of age (weight-for-age Duration of exclusive breastfeeding (weeks) 

z-score) 

Number of diarrhoea episodes experienced in a year Access to clean water supply (yes, no) 

Child develops leukaemia (yes, no) Proximity to nuclear power station (miles) 

Survival time (months) following diagnosis of lung Socio-economic status (6 groups) 

cancer 

Table 2.5 Commonly used alternatives for describing 

exposure and outcome variables. 

Outcome variable 

Response variable 

Dependent variable 

y-variable 

Case-control group 

Exposure variable 

Explanatory variable 

Independent variable 

x-variable 

Risk factor 

Treatment group 

clinical trial (see Chapter 34) the exposure is the treatment group, and in a case

control study, the outcome is the case-control status, and the exposure variables 
are often called risk factors. 

The type of outcome variable is particularly important in determining the most 
appropriate statistical method . Part B of this book describes statist ical methods 
for numerical outcome variables. Part C describes methods for binary outcome 
variables, with a brief description (Section 20. 5 )  of methods for categorical out
comes with more than two types of response. Part D describes methods to be used 
for rates, arising in studies with binary outcomes in which individuals are fol lowed 
over time. 
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3 . 1  I NTR O D U CTI O N  

With ready access to statistical software, there is a temptation to j ump straight 
into complex analyses. This should be avoided . An essential first step of an 
analysis is  to summarize and display the data. The familiarity with the data gained 
through doing this is invaluable in developing an appropriate analysis plan (see 
Chapter 38 ) .  These init ia l  displays are also valuable in identifying outliers (unusual 
values of a variable) and revealing possible errors in the data, which should be 
checked and, if necessary, corrected . 

This chapter describes simple tabular and graphical techniques for displaying the 
distribution of values taken by a single variable, and for displaying the association 
between the values of two variables. Diagrams and tables should always be clearly 
label led and self-explanatory; it should not be necessary to refer to the text to 
understand them. At the same time they should not be cluttered with too much 
detai l ,  and they must not be misleading. 

3 . 2  F R E Q U E N C I E S ,  F R E Q U E N C Y  D I STR I B UTI O N S  A N D  H I STO G R A M S  

Frequencies (categorical variables) 

Summarizing categorical variables is straightforward, the main task being to 
count the number of observations in each category. These counts are called 
frequencies. They are often also presented as relative frequencies; that is as propor
tions or percentages of the total number of individuals. For example, Table 3 . 1  
summarizes the method o f  delivery recorded for 600 births i n  a hospital .  The 
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Table 3.1  Method of delivery of 600 babies born in a hospital. 

Method of delivery No. of births Percentage 

Normal 478 79.7 

Forceps 65 1 0.8 

Caesarean section 57 9.5 

Total 600 1 00.0 

variable of interest is the method of delivery, a categorical variable with three 
categories: normal delivery, forceps delivery, and caesarean section .  

Frequencies and relative frequencies are commonly i l lustrated by a bar chart 

(also known as a bar diagram) or by a pie chart. In a bar chart the lengths of the 
bars are drawn proportional to the frequencies, as shown in F igure 3 . 1 .  Alterna
tively the bars may be drawn proportional to the percentages in each category; the 
shape is  not changed, only the labelling of the scale. In  either case, for ease of 
reading i t  is  helpful to write the actual frequency and/or percentage to the right of 
the bar. In a pie chart (see Figure 3 .2), the circle is divided so that the areas of the 
sectors are proportional to the frequencies, or equivalently to the percentages. 

Frequency distributions (numerical variables) 

I f  there are more than about 20 observations, a useful first step in summarizing a 
numerical (quantitative) variable is to form a frequency distribution. This is a table 
showing the number of observations at different values or within certain ranges. 
For a discrete variable the frequencies may be tabulated either for each value of 
the variable or for groups of values. With continuous variables, groups have to be 
formed. An example is given in Table 3 .2, where haemoglobin has been measured 

Normal 
delivery 

Forceps 

Caesarean 
section 

0 1 00 200 300 

Number of births 

F ig .  3 . 1  Bar  chart showing method of  del ivery of  600 babies born i n  a hospital .  

478 

400 500 
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N o rmal  
del ivery (47 8) 

Fig. 3 .2  Pie chart showing method of delivery of 600 babies born in a hospital. 

to the nearest 0 . 1 g/ l OO ml  and the group 1 1-, for example, contains all measure
ments between l 1 .0 and 1 1 .9 gl l 00 ml inclusive. 

When forming a frequency distribution, the first things to do are to count the 
number of observations and to identify the lowest and highest values. Then decide 

Table 3.2 Haemoglobin levels in g/1 00 ml for 70 women. 

(a) Raw data with the highest and lowest values underlined. 

1 0.2 1 3.7  1 0.4 1 4.9 1 1 . 5 1 2 .0 1 1 .0 

1 3 .3 1 2 .9 1 2 . 1  9.4 1 3 .2 1 0.8 1 1 .7 

1 0.6 1 0.5 1 3 .7 1 1 .8 1 4. 1  1 0.3 1 3 .6 

1 2 . 1  1 2 .9 1 1 .4 1 2 .7  1 0.6 1 1 .4 1 1 .9 

9.3 1 3 .5 1 4.6 1 1 .2 1 1 .7 1 0.9  1 0.4 

1 2 .0 1 2 .9 1 1 . 1 8.8 1 0.2 1 1 .6 1 2 .5 

1 3.4 1 2 . 1  1 0.9 1 1 .3 1 4.7  1 0.8 1 3 .3 

1 1 .9 1 1 .4 1 2 .5 1 3 .0 1 1 .6 1 3 . 1  9.7 

1 1 .2 1 5 . 1  1 0.7  1 2 .9 1 3.4 1 2 .3 1 1 .0 

1 4.6 1 1 . 1 1 3. 5  1 0.9 1 3 . 1  1 1 .8  1 2 .2 

(b) Frequency distribution. 

Haemoglobin (g/1 00 ml) No. of women Percentage 

8- 1 .4 

9- 3 4.3 

1 0- 1 4  20.0 

1 1 - 1 9  27 . 1  

1 2- 1 4  20.0 

1 3- 1 3  1 8.6 

1 4- 5 7 . 1  

1 5-1 5.9 1 .4 

Total 70 1 00.0 
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whether the data should be grouped and, if so, what grouping interval should be 
used. As a rough guide one should aim for 5-20 groups, depending on the number 
of observations. If the interval chosen for grouping the data is too wide, too much 
detail wil l  be lost, while if it is  too narrow the table wil l be unwieldy. The starting 
points of the groups should be round numbers and, whenever possible, all the 
intervals should be of the same width. There should be no gaps between groups. 
The table should be labelled so that i t  is clear what happens to observations that 
fal l  on the boundaries. 

For example, in  Table 3.2 there are 70 haemoglobin measurements. The lowest 
value is 8.8 and the highest 1 5 . 1 g/ l OO ml .  Intervals of width 1 g/ l OO ml were 
chosen , leading to eight groups in the frequency distribution. Labell ing the groups 
8-, 9-, . . .  is clear. An acceptable alternative would have been 8 .0-8.9, 9 .0-9 .9  and 
so on. Note that labell ing them 8-9, 9- 1 0  and so on would have been confusing, 
since it would not then be clear to which group a measurement of9 .0  g/ l OO ml ,  for 
example, belonged. 

Once the format of the table is decided, the numbers of observations in 
each group are counted. If this is  done by hand, mistakes are most easily avoided 
by going through the data in  order. For each value, a mark is put against 
the appropriate group. To facilitate the counting, these marks are arranged 
in groups of five by putting each fifth mark horizontally through the previous 
four (++++); these groups are called five-bar gates. The process is  called tally

ing. 

As well as the number of women, i t  is useful to show the percentage of women in 
each of the groups. 

Histograms 

Frequency distributions are usually i l lustrated by histograms, as shown in Figure 
3 . 3  for the haemoglobin data. Either the frequencies or the percentages may be 
used; the shape of the histogram will be the same. 

The construction of a histogram is straightforward when the grouping intervals 
of the frequency distribution are all equal, as is the case in  Figure 3 . 3 .  If the 
in tervals are of different widths, it is important to take this into account when 
drawing the histogram, otherwise a distorted picture will be obtained. For 
example, suppose the two highest haemoglobin groups had been combined i n  
compil ing Table 3 .2(b). The frequency for  this combined group ( 1 4.0-
1 5 .9 g/ l 00 ml) would be six, but clearly i t  would be misleading to draw a rectangle 
of height six from 14 to 16 g/ l 00 ml .  Since this in terval would be twice the width of 
al l  the others, the correct height of the l ine would be three, half the total frequency 
for this group. This is i l lustrated by the dotted l ine in Figure 3 . 3 .  The general 
rule for drawing a h istogram when the intervals are not all the same width is to 
make the heights of the rectangles proportional to the frequencies divided by the 
widths, that is to make the areas of the histogram bars proportional to 
the frequencies. 
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Fig. 3 .3  Histogram of  haemoglobin levels o f  70  women. 

Frequency polygon 

An alternative but less common way of i l lustrating a frequency d istribution is a 
frequency polygon, as shown in Figure 3.4. This is particularly useful when compar
ing two or more frequency distributions by drawing them on the same d iagram .  The 
polygon is drawn by imagining (or l ightly pencil l ing) the histogram and joining 
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Fig. 3 . 4  Frequency polygon o f  haemoglobin levels o f  70 women. 
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the midpoints of the tops of its rectangles. The endpoints of the resulting l ine are 
then joined to the horizontal axis at the midpoints of the groups immediately 
below and above the lowest and highest non-zero frequencies respectively. For the 
haemoglobin data, these are the groups 7 .0-7 .9 and 1 6.0- 1 6.9  g/ l 00 ml. The 
frequency polygon in Figure 3.4 is therefore joined to the axis at 7.5 and 
1 6. 5 g/ 1 00 ml .  

Frequency distribution of the population 

Figures 3 . 3  and 3 .4 i l lustrate the frequency distribution of the haemoglobin levels 
of a sample of 70 women. We use these data to give us information about the 
distribution of haemoglobin levels among women in genera l .  For example, it 
seems uncommon for a woman to have a level below 9 .0 g/ I OO ml or above 
1 5 .0 g/ l 00 ml. Our confidence in drawing general conclusions from the data 
depends on how many individuals were measured. The larger the sample, the 
finer the grouping interval that can be chosen, so that the histogram (or frequency 
polygon) becomes smoother and more closely resembles the d istribution of the 
total population. At the l imit, if i t  were possible to ascertain the haemoglobin 
levels of the whole population of women, the resulting diagram would be a smooth 
curve. 

Shapes of frequency distributions 

Figure 3 . 5  shows three of the most common shapes of frequency distributions. 
They all have high frequencies in the centre of the distribution and low frequencies 
at the two extremes, which are called the upper and lower tails of the distribution. 
The distribution in  Figure 3 . 5(a) is also symmetrical about the centre; this shape of 
curve is often described as 'bell-shaped' .  The two other distributions are asym
metrical or skewed. The upper tail of the distribution in  Figure 3 . 5(b) is  longer 
than the lower tail; this is called positively skewed or skewed to the right. The 
d istribution in Figure 3 . 5(c) is negatively skewed or skewed to the left. 

All three distributions in Figure 3 . 5  are unimodal, that is  they have just one peak .  
Figure 3 . 6(a) shows a bimodal frequency distribution, that is  a distribution wi th two 
peaks. This is occasionally seen and usually indicates that the data are a mixture of 

( a )  Sym metrica l and 
be l l -shaped, 
e . g .  he ight 

(b )  Positively skewed o r  
skewed to t h e  r ight,  
e .g .  triceps skinfold 
measu rement 

(c )  Negat ively skewed or 
skewed to the left. 
e . g .  period of 
gestat ion  

F ig .  3.5 Three common shapes of  frequency distributions with an example of  each. 
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( a )  B imoda l ,  e .g .  hormone ( b )  Reverse J-shaped,  
levels of ma les and e .g .  survival  t ime afte r 
females d iagnosis  of lung cancer 

D 
(c )  U n ifo rm, e . g .  month  
of occu rre nce of disease 
with no seaso n a l  patte rn 

Fig .  3 .6 Three less-common shapes of frequency distributions with an example of each. 

two separate d istributions. Also shown in Figure 3 . 6  are two other distributions 
that are sometimes found, the reverse J-shaped and the uniform distributions. 

3 . 3  C U M U LATI V E  F R E Q U E N CY D I STR I B UTI O N S ,  Q U A NTI L E S  

A N D  P E R C E NTI L E S  

Cumulative frequency distributions 

Frequency distributions (and histograms) indicate the way data are distributed 
over a range of values, by showing the number or percentage of ind ividuals within 
each group of values. Cumulative distributions start from the lowest value and 
show how the number and percentage of individuals accumulate as the values 
increase. For example, the cumulative frequency distribution for the first five 
observations of haemoglobin levels is shown in Table 3 . 3 .  There were 70 observa
t ions, so each represents l 00170 = l .43% of the total distribution. Rounding to one 
decimal place, the first observation ( 8 .8 g/ l 00 ml)  corresponds to 1 .4% of the 
distribution, the first and second observations to 2 .9% of the d istribution, and 
so on. Table 3 . 3  shows the values of these cumulative percentages, for different 
observations in the range of observed haemoglobin levels in the 70 women . A total 
of four women (5 .7%) had levels below 1 0  g/ 1 00 ml. Similarly, 1 8  women (25 .7%) 
had haemoglobin levels below 1 1  g/ 1 00 ml .  

The cumulative frequency distribution is i l lustrated in Figure 3 .7 .  This is  drawn 
as a step function: the vertical jumps correspond to the increases in the cumulative 
percentages at each observed haemoglobin level .  (Another example of p lots that 
use step functions is Kaplan-Meier plots of cumulative survival probabil ities over 
time; see Section 26.3 . )  Cumulative frequency curves are steep where there is a 
concentration of values, and shallow where values are sparse. In this example, 
where the majority of haemoglobin values are concentrated in the centre of the 
distribution, the curve is  steep in the centre, and shallow at low and high values. If 
the haemoglobin levels were evenly distributed across the range, then the cumula
tive frequency curve would increase at a constant rate; al l  the steps would be the 
same width as wel l  as the same height. An advantage of cumulative frequency 
distributions is  that they display the shape of the distribution without the need for 
grouping, as required in plotting histograms (see Section 3 .2 ) .  However the shape 
of a distribution is usually more clearly seen in a histogram. 
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Table 3.3 Cumulative percentages for different ranges of haemoglobin levels of 70 women. 

Cumulative Haemoglobin level 

Observation percentage (g/1 00 ml) 

1 1 .4 8.8 Minimum = 8.8 

2 2.9 9.3 

3 4.3 9.4 

4 5.7 9.7 

5 7 . 1  1 0.2 

1 5  2 1 .4 1 0.8 

1 6  22.9 1 0.9 

1 7  24.3 1 0.9 Lower quartile = 1 0.9 
1 8  25.7 1 0.9 

1 9  27.1 1 1 .0 

20 28.6 1 1 .0 

33 47.1 1 1 .7 

34 48.6 1 1 .8 

35 50.0 1 1 .8 
Median = 1 1 .85 

36 51 .4 1 1 .9 

3 7  52.9 1 1 .9 

38 54.3 1 2 .0 

50 71 .4 1 2 .9 

51 72.9 1 2 .9 

52 74.3 1 3 .0 

53 75.7 1 3 . 1  Upper quartile = 1 3 . 1  

54 77 . 1  1 3 .1  

55 78.6 1 3 .2 

66 94.3 1 4.6 

67 95.7 1 4.6 

68 97.1 1 4.7 

69 98.6 1 4.9 

70 1 00 1 5. 1  Maximum = 1 5 . 1  

Median and quartiles 

Quartile 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

4 

4 

Cumulative frequency distributions are useful in recoding a numerical variable 
into a categorical variable. The median is the midway value; half of the distribu
tion l ies below the median and half above it. 

Median = 
(n +2 l )tb 

value of the ordered observations 

(n = number of observations) 
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Fig. 3. 7 Cumulative frequency distribution of haemoglobin levels of 70 women, with the median marked by 

a circle, and lower and upper quartiles marked by squares. 

For the haemoglobin data, the median is the 7 1 /2 = 35 .5th observation and so 
we take the average of the 35th and 36th observations. Thus the median is ( 1 1 . 8+ 
l l .9)/2 = 1 1 . 85 ,  as shown in Table 3 .3 .  Calculation of the median is also described 
in Section 4.2 .  When the sample size is reasonably large, the median can be estimated 
from the cumulative frequency distribution; it is the haemoglobin value correspond
ing to the point where the 50% line crosses the curve, as shown in Figure 3. 7 .  

Also marked on Figure 3 . 7  are the two points where the 25% and  75% lines 
cross the curve. These are called the lower and upper quartiles of the distribution, 
respectively, and together with the median they divide the distribution into four 
equally-sized groups. 

L ·1 
(n + l )th 

l f h d d b 
· 

ower quartJ e = 
4 

va ue o t e or ere o servat10ns 

. 3 x (n + l )th 
Upper q uartile = 

4 
value of the ordered observations 

In the haemoglobin data , the lower quartile is the 7 1 /4 = 1 7 .75th observation. 
This is calculated by taking th ree quarters of the difference between the 1 7th and 
1 8th observations and adding it to the 1 7th observation. Since both the 1 7th 
and 1 8th observations equal I 0.9 g/ 1 00 ml ,  so does the lower quart i le, as shown 
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rn Table 3 . 3 .  Similarly, 3 x 7 1  /4 = 53 .25, and since both the 53rd and 54th 
observations equal 1 3 . 1 g/ l OO ml, so does the upper quartile. 

The range of the d istribution is the difference between the m111 1mum and 
maximum values. From Table 3 . 3 ,  the minimum and maximum values for the 
haemoglobin data are 8.8 and 1 5 . 1  g/ I OO ml,  so the range is 1 5 . l  - 8 . 8  = 6 .3 g/ 
l 00 ml. The difference between the lower and upper quartiles of the haemoglobin 
data is 2.2 g/ l 00 ml. This is known as the interquartile range. 

Range = h ighest value - lowest value 

Interquartile range = upper quartile - lower quartile 

A useful plot, based on these values, is a box and whiskers plot, as shown i n  
Figure 3 . 8 .  The box i s  drawn from the lower quartile t o  the upper q uartile; its 
length gives the interquartile range. The horizontal l ine in the middle of the box 
represents the median. Just as a cat's whiskers mark the full width of its body, the 
'whiskers' in this plot mark the full extent of the data. They are drawn on either 
end of the box to the minimum and maximum values. 

The right hand column of Table 3 . 3  shows how the median and lower and upper 
quarti les may be used to divide the data into equally sized groups called quartiles. 

1 6  

1 5  

E 1 4  0 0 
..---- 1 3  0) 
.__... 

Q) > Q) 1 2  
c 
:0 0 1 1  0) 0 
E 
Q) 1 0  co 

I 

9 

8 
Fig. 3.8 Box and whiskers plot of the distribution of the haemoglobin levels of 70 women. 
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Values between 8 . 8  and 1 0.9  g/ 1 00 ml are in the first quartile, those between 1 1  and 
1 1 . 8  g/ 1 00 ml are in  the second quartile and so on. Note that equal values should 
always be placed in the same group, even if the groups are then of slightly different 
sizes. 

Quantiles and percentiles 

Equal-sized divisions of a d istribution are called quantiles. For example, we may 
define tertiles, which divide the data into three equal ly-sized groups, and quintiles, 

which d ivide them into five. An example was described in Section 2 .3 ,  where the 
range of values observed for average monthly income was used to divide the 
sample into five equally-sized income groups, and a new variable ' income group' 
created with ' I '  corresponding to the least affluent group in the population and '5' 
to the most affluent group. Quinti les are estimated from the intersections with the 
cumulative frequency curve of l ines at 20%, 40%, 60% and 80%. Divisions into ten 
equally sized groups are cal led deciles. 

More generally, the kth percentile (or centile as it is also called) is the point 
below which k% of the values of the distribution lie. For a d istribution with n 
observations, i t  is defined as: 

. k x (n + l )th kth percentile = 
1 00 

value of ordered observations 

I t  can also be estimated from the cumulative frequency curve; i t  is the x value 
corresponding to the point where a l ine drawn at k% intersects the curve. For 
example, the 5% point of the haemoglobin values is  estimated to be 9 .6 g/ 1 00 ml .  

3 . 4  D I S P L AY I N G  TH E A S S O C I ATI O N  B ETW E E N  TWO VA R I A B L E S  

Having examined the distribution o f  a single variable, we will often wish t o  display 
the way in which the distribution of one variable relates to the distribution of 
another. Appropriate methods to do this will depend on the type of the two variables. 

Cross tabulations 

When both variables are categorical, we can examine their relationship informally 
by cross-tabulating them in a contingency table. A useful convention is for the rows 
of the table to correspond to the exposure values and the columns to the out
comes . For example, Table 3 .4 shows the results from a survey to compare the 
principal water sources in  1 50 households in three vil lages in West Africa. In this 
example, i t  would be natural to ask whether the household's vi l lage affects their 
l ikely water source, so that water source is the outcome and vil lage is the exposure. 
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Table 3.4 Comparison of principal sources of water 

used by household in three villages in West Africa. 

Village 

A 

B 
c 

River 

20 

32 

1 8  

Water source 

Pond 

1 8  

20 

1 2  

Spring 

1 2  

8 

1 0  

The i nterpretabil ity o f  contingency tables can be improved by including 
marginal totals and percentages: 

• The marginal row totals show the total number of households in each vi l lage, 
and the marginal columns show the total numbers using each water source. 

• Percentages (or proportions) can be calculated with respect to the row variable, 
the column variable, or the total number of individuals. A useful guide is that 
the percentages should correspond to the exposure variable. I f  the exposure is 
the row variable, as here, then row percentages should be presented, whereas if 
i t  is the column variable then column percentages should be presented. 

In  Table 3 .4, the exposure variable, vi llage, is the row variable, and Table 3 . 5  
therefore shows row percentages together with marginal ( row and  column) totals. 
We can now see that, for example, the proportion of households mainly using a 
river was highest in Vil lage B, while vil lage A had the highest proportion of 
households mainly using a pond. By examining the column totals we can see that 
overal l ,  rivers were the principal water source for 70 ( 47%) of the 1 50 households. 

Table  3.5 Comparison of  principal sources of  water used by households in three 

villages in West Africa, including marginal totals and row percentages. 

Water source 

Village River Pond Spring Total 

A 20 (40%} 1 8  (36%) 1 2  (24%) 50 (1 00%) 
B 32 (53%) 20 (33%} 8 (1 3%} 60 (1 00%) 
c 1 8  (45%) 1 2  (30%) 1 0  (25%) 40 (1 00%} 

Total 70 (47%) 50 (33%) 30 (20%) 1 50 (1 00%) 

Scatter plots 

When we wish to examine the relationship between two numerical variables, we 
should start by drawing a scatter plot. This is a simple graph where each pair of 
values is represented by a symbol whose horizontal position is  determined by 
the value of the first variable and vertical position is determined by the value of the 
second variable. By convention, the outcome variable determines vertical position 
and the exposure variable determines horizontal position. 
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For example, Figure 3 . 9  shows data from a study of lung function among 
636 children aged 7 to 1 0  years living in  a deprived suburb of Lima, Peru . The 
maximum volume of air which the chi ldren could breath out in J second (Forced 
Expiratory Volume in 1 second, denoted as FEV 1 )  was measured using a spiro
meter. We are interested in how FEY 1 changes with age, so that age is the 
exposure variable (horizontal axis ) and FEY 1 is the outcome variable (vertical 
axis ) .  The plot gives the clear impression that FEY 1 increases in an approximately 
l inear manner with age. 

Scatter plots may also be used to display the relationship between a categorical 
variable and a continuous variable. For example, in the study of lung function we 
are also interested in the relationship between FEY 1 and respiratory symptoms 
experienced by the child over the previous 1 2  months. Figure 3 . 1 0  shows a scatter 
plot that displays this relationship. 

This figure is difficult to interpret, because many of the points overlap, particu
larly in the group of children who did not report respiratory symptoms. One 
solution to this is  to scatter the points randomly along the horizontal axis, a 
process known as 'jittering' . This produces a clearer picture, as shown in Figure 
3 . 1 1 . We can now see that FEY1 tended to be higher in children who did not report 
respiratory symptoms in the previous 1 2  months than in those who did.  

An alternative way to display the relationship between a numerical variable and 
a d iscrete variable is to draw box and whiskers plots, as described in Section 3 . 3 .  
Table 3 . 6  shows the data needed to  do  this for the two groups of chi ldren: those who 
did and those who did not report respiratory symptoms. All the statistics d isplayed are 
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Fig. 3.9 Scatter plot showing the relationship between FEV1 and age in  636 children l iving in a deprived 

suburb of Lima, Peru. 
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Fig. 3. 1 0  Scatter plot showing the relationship between FEV1 and respi ratory symptoms in 636 chi ldren 

living in a deprived suburb of Lima, Peru. 
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Fig. 3 . 1 1 Scatter plot showing the relationship between FEV1 and respiratory symptoms in 636 chi ldren 

l iv ing in a deprived suburb of Lima, Peru. The position of the points on the horizontal axis was moved 

randomly ('jittered') in order to separate them. 
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Table 3.6 Median, interquartile range, and range of FEV1 measurements on 636 children living in a deprived 

suburb of Lima, Peru, according to whether the child reported respiratory symptoms in the previous 1 2  months. 

Respiratory symptoms Lowest Lower Upper Highest 

in the previous 1 2  FEV1 quartile quartile FEV1 
months n value (25th centile) Median (75th centile) value 

No 491 0.81 1 .44 1 .61 1 .82 2.69 

Yes 1 45 0.64 1 .28 1 .46 1 .65 2.39 

Totals 636 0.64 1 .40 1 .58 1 .79 2.69 

lower in children who reported symptoms. This is renected in  Figure 3 . 1 2, where 
al l  the points in the box and whiskers plot of FEY 1 values for children who 
reported respiratory symptoms are lower than the corresponding points in the 
box and whiskers plot for children who did not report symptoms. 
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> w LL. 
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0 
No Yes 

Respiratory symptoms in last 1 2  months 

Fig. 3 . 12  Box and whiskers plots of the distribution of FEV1 in  636 children l iving in  a deprived suburb of 

Lima, Peru, according to whether they reported respiratory symptoms in  the previous 1 2  months. 

3 . 5  D I S P LA Y I N G  T I M E T R E N D S  

Graphs are also useful for displaying trends over time, such as the declines i n  child 
mortality rates that have taken place in al l regions of the world in  the latter half of 
the twentieth century, as shown in Figure 3 . 1 3 . The graph also indicates the 
enormous differentials between regions that sti l l  remain .  Note that the graph 
shows absolute changes in mortal i ty rates over time. An alternative would be to 



30 Chapter 3: Displaying the data 

300 

250 

� ro - - - -<lJ 200 <' 0 0 '-0 '--;;; 1 50 
'-

..c '- - - - - - ·  
+"' '-ro '-<lJ '--a 
� 1 00 ..c ........ 
u 

50 - -

0 
1 960 1 980 1 996 

Fig. 3 . 13  Trends in under-five mortality rates by region of the world. 

Sub-Saharan Afr ica 

M iddle East a nd 
North Afr ica 

South Asi a  

East Asi a  a nd Pacific 

Lati n  America and  
Ca r ibbean 

CEE/CIS and  Ba lt ic  States 

I ndustri a l ized countries 

plot the logarithms of the death rates (see Chapter 1 3) .  The slopes of the l ines 
would then show proportional declines, enabling rates of progress between regions 
to be readily compared. 

Breaks and discontinuities in the scale(s) should be clearly marked, and avoided 
whenever possible. Figure 3 .  l 4(a) shows a common form of misrepresentation due 
to an inappropriate use of scale. The decline in infant mortality rate ( IMR)  has 
been made to look dramatic by expanding the vertical scale, while in  reality the 
decrease over the 1 0  years d isplayed is only sl ight (from 22.7 to 22. l deaths/ 
1 000 live births/year). A more realistic representation is shown in  Figure 3. l 4(b ), 
with the vertical scale starting at zero. 

(a) (b )  
24 

22.7 
(/) 20 (/) 22.6 ..c ..c t:'. t:'. ii .0 22.5  1 6  Ql Ql .� > 22.4 1 2  0 0 22.3 0 0 0 0 .- 8 .-

22 .2  ii: ii: 
� 

� 4 
2 2 . 1  

22·0
1 970 1 975 1 980 

0
1 970 1 975 1 980 

Fig. 3 . 14  Decline in  infant mortality rate ( IMR} between 1 970 and 1 980. (a) Inappropriate choice of scale 

has misleadingly exaggerated the decline. (b} Correct use of scale. 



PART B 

A NA L YSIS O F  N U M E R I CA L  
O UT C O M ES 

I n  this part of the book we describe methods for the analysis of studies where the 
outcome variable is  numerical. Examples of such variables include blood pressure, 
antibody levels, birth weight and so on. We begin, in Chapter 4, by describing how 
to summarize characteristics of the distribution of a numerical variable; having 
defined the mean and standard deviation of a distribution, we introduce the 
important concept of sampling error. Chapter 5 describes the normal distribution, 

which occupies a central role in statist ical analysis. We expla in that the normal 
distribution is  important not only because it is  a good empirical description of the 
d istribution of many variables, but also because the sampling distribution of a 
mean is normal, even when the ind ividual observations are not normally distrib
uted. We build on this in the next three chapters, introducing the two fundamental 
ways of reporting the results of a statistical analysis, confidence intervals (Chapters 
6 and 7) and P-values (Chapters 7 and 8) .  

Chapter 6 deals with the analysis of a single variable. The remainder of th is  part 
of the book deals with ways of analysing the relationship between a numerical 
outcome (response) variable and one or more exposure (explanatory) variables. 
We describe how to compare means between two exposure groups ( Chapters 7 and 
8) ,  and extend these methods to comparison of means in  several groups using 
analysis of variance (Chapter 9 )  and the use of linear regression to examine the 
association between numerical outcome and exposure variables (Chapter I O) .  All 
these methods are shown to be special cases of multiple regression, which is 
described in  Chapter 1 1 . 

We conclude by describing how we can examine the assumptions underlying 
these methods (Chapter 1 2) ,  and the use of transformations of continuous vari
ables to faci l itate data analysis when these assumpt ions are violated (Chapter 1 3) .  
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4 . 1  I N T R O D U CT I O N  

A frequency d istribution ( see Section 3 .2 )  gives a general picture of the distribu
tion of a variable. I t  is  often convenient, however, to summarize a numerical 
variable sti l l  further by giving just two measurements, one indicating the average 
value and the other the spread of the values. 

4 . 2  M EA N ,  M E D I A N  A N D M O D E  

The average value i s  usually represented by the arithmetic mean, customarily just 
called the mean. This is simply the sum of the values divided by the number of values. 

- L;x 
Mean, x = 

n 

where x denotes the values of the variable, I; ( the Greek capital letter sigma) 
means ' the sum of'  and n i s  the number of observations. The mean is denoted by x 
( spoken 'x bar' ) .  

Other measures of the average value are the median and the mode. The median was 
defined in Section 3 . 3  as the value that divides the distribution in half. If the 
observations are arranged in increasing order, the median is the middle observation. 

Median = (n; l )  th value of ordered observations 
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If there is an even number of observations, there is no middle one and the average of 
the two 'middle' ones is taken. The mode is the value which occurs most often. 

Example 4. 1 
The fol lowing are the plasma volumes of eight healthy adult males: 

2 . 75, 2 . 86, 3 .37, 2 .76, 2 .62, 3 .49, 3 .05, 3 . 1 2  l i tres 

(a) n = 8 
I:x = 2 .75  + 2 .86 + 3 . 37 + 2 .76 + 2.62 + 3 .49 + 3 .05  + 3 . 1 2  = 24.02 l itres 

Mean, x = L,x/n = 24.02/8 = 3 .00 l itres 

(b) Rearranging the measurements in increasing order gives: 
2 .62, 2 .75, 2 .76, 2 . 86, 3 .05, 3 . 1 2, 3 .37 ,  3 .49 l i tres 

Median = (n + 1 )/2 = 9/2 = 4Y2th value 

= average of 4th and 5th values 

= (2 .86 + 3 .05)/2 = 2.96 l i tres 

(c) There is no estimate of the mode, since all the values are different .  

The mean is usually the preferred measure since i t  takes into account each individ
ual observation and is most amenable to statistical analysis. The median is a useful 
descriptive measure if there are one or two extremely high or low values, which 
would make the mean unrepresentative of the majority of the data. The mode is 
seldom used. If the sample is small, either i t  may not be possible to estimate the 
mode (as in Example 4. 1 c), or the estimate obtained may be misleading. The mean, 
median and mode are, on average, equal when the distribution is  symmetrical and 
unimodal .  When the distribution is  posit ively skewed, a geometric mean may be 
more appropriate than the arithmetic mean. This is  discussed in  Chapter 1 3 . 

4 . 3  M E A S U R E S  O F  V A R I AT I O N  

Range and interquartile range 

Two measures of the amount of variation in a data set, the range and the 
interquartile range, were introduced in Section 3 . 3 .  The range is the simplest 
measure, and is the difference between the largest and smallest values. I ts disad
vantage is  that it is  based on only two of the observat ions and gives no idea of how 
the other observations are arranged between these two. Also, i t  tends to be larger, 
the larger the size of the sample. The interquartile range indicates the spread of the 
middle 50% of the distribution, and together with the median is a useful adjunct to 
the range. I t  is less sensitive to the size of the sample, providing that this is not too 
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small; the lower and upper quarti les tend to be more stable than the extreme 
values that determine the range. These two ranges form the basis of the box and 

whiskers plot, described in Sections 3 .3  and 3.4. 

Range = h ighest value - lowest value 

I nterquartile range = upper quartile - lower quartile 

Variance 

For most statistical analyses the preferred measure of variation is the variance (or 
the standard deviation, which is derived from the variance, see below) .  This uses al l 
the observations, and is defined in terms of the deviations (x-x) of the observations 
from the mean, since the variation is smal l  if the observations are bunched closely 
about their mean, and large if they are scattered over considerable distances. It is 
not possible simply to average the deviations, as this average will always be zero; 
the positive deviations corresponding to values above the mean will balance out 
the negative deviations from values below the mean. An obvious way of overcom
ing this difficulty would be simply to average the sizes of the deviations, ignoring 
their sign. However, this measure is not mathematically very tractable, and so 
instead we average the squares of the deviations, since the square of a number is 
always positive. 

2 L:(x - x)2 
Variance, s = ----

(n - I )  

Degrees of freedom 

Note that the sum of squared deviations is divided by (n - I )  rather than n, 
because i t  can be shown mathematically that this gives a better estimate of the 
variance of the underlying population. The denominator (n - 1 )  is called the 
number of degrees of freedom of the variance. This number is  (n - I )  rather than 
n ,  since only (n - 1 )  of the deviations (x - x) are independent from each other. 
The last one can always be calculated from the others because all n of them must 
add up to zero. 

Standard deviation 

A disadvantage of the variance is  that i t  is measured in  the square of the units used 
for the observations. For example, if the observat ions are weights in grams, the 
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variance is in grams squared. For many purposes i t  is more convenient to express 
the variation in the original units by taking the square root of the variance. This is 
called the standard deviation (s .d . ) .  

/'5:,(x - x)2 
s .d . ,  s = V (n - 1 )  

or equivalently 

s = 
. /'5:,x2 - ('5:,x)2 /n V (n - 1 )  

When using a calculator, the second formula is more convenient for calculation, 
since the mean does not have to be calculated first and then subtracted from each 
of the observations. The equivalence of the two formulae is demonstrated in  
Example 4.2.  (Note: Many calculators have built-in functions for the mean and 
standard deviation. The keys are commonly label led x and cr11_ 1 ,  respectively, 
where er is the lower case Greek letter sigma. )  

Example 4.2 
Table 4. 1 shows the steps for the calculation of the standard deviat ion of the eight 
plasma volume measurements of Example 4. 1 .  

'5:,x2 - ('5:,x)2 /n = 72.7980 - (24.02)2 /8 = 0.6780 

gives the same answer as '5:,(x - x)2, and 

s = J(0.6780/7) = 0 . 3 1  l i tres 

Table 4. 1  Calculation of the standard deviation of the plasma volumes (in l itres) of eight healthy adult males 

(same data as in Example 4 . 1 ) .  Mean, x = 3 .00 litres. 

Plasma volume Deviation from the mean Squared deviation Squared observation 

x x - x (x - x)2 xl 
2.75 -0.25 0.0625 7.5625 

2.86 -0.1 4 0.0 1 96 8 . 1 796 

3.37 0.37 0.1 369 1 1 .3569 

2.76 -0.24 0.0576 7.61 76 

2.62 -0.38 0 . 1 444 6.8644 

3.49 0.49 0.2401 1 2 . 1 801 

3 .05 0.05 0.0025 9.3025 

3 . 1 2 0.1 2 0.01 44 9.7344 

Totals 24.02 0.00 0.6780 72.7980 
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Interpretation of the standard deviation 

Usually about 70% of the observations lie within one standard deviation of their 
mean, and about 95% l ie within two standard deviations. These figures are based 
on a theoretical frequency distribution, called the normal distribution, which is 
described in  Chapter 5 .  They may be used to derive reference ranges for the 
distribution of values in the population (see Chapter 5) .  

Change of units 

Adding or subtracting a constant from the observations al ters the mean by the same 
amount but leaves the standard deviation unaffected. Multiplying or dividing by a 
constant changes both the mean and the standard deviation in the same way. 

For example, suppose a set of temperatures is converted from Fahrenheit to 
centigrade. This is  done by subtracting 32, multiplying by 5,  and dividing by 9. 
The new mean may be calculated from the old one in exactly the same way, that is 
by subtracting 32, multiplying by 5, and dividing by 9 .  The new standard devi
ation, however, is simply the old one multiplied by 5 and d ivided by 9, since the 
subtraction does not affect it . 

Coefficient of variation 

s 
CV = - X 1 00% x 

The coefficient of variation expresses the standard deviation as a percentage of the 
sample mean. This is useful when interest is in the size of the variation relative to 
the size of the observation, and i t  has the advantage that the coefficient of 
variation is  independent of the units of observation. For example, the value 
of the standard deviation of a set of weights wil l be different depending on 
whether they are measured in  kilograms or pounds. The coefficient of variation, 
however, wil l  be the same in both cases as i t  does not depend on the unit of 
measurement. 

4 . 4  C A L C U L ATI N G  T H E  M E A N  A N D  STA N D A R D  D E V I ATI O N  F R O M  A 
F R E Q U E N CY D I ST R I B UTI O N  

Table 4.2 shows the distribution of the number of previous pregnancies of a group 
of women attending an antenatal cl inic. Eighteen of the 1 00 women had 
no previous pregnancies, 27 had one, 3 1  had two, 1 9  had three, and five had 
four previous pregnancies. As, for example, adding 2 th irty-one t imes is 
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Table 4.2 Distribution of the number of previous pregnancies of a group of women 

aged 30-34 attending an antenatal clinic. 

No. of previous pregnancies 

0 2 3 4 Total 

No. of women 1 8  27 31 1 9  5 1 00 

equivalent to adding the product (2 x 3 1 ) , the total number of previous pregnan
cies is  calculated by: 

L:x = (0 x 1 8) + ( 1  x 27) + (2 x 3 1 )  + (3  x 1 9) + ( 4 x 5) 

= 0 + 27 + 62 + 57 + 20 = 1 66 

The average number of previous pregnancies is, therefore: 

x = 1 66/ 1 00 = 1 .66 

In the same way : 

L:x2 = (02 x 1 8) + ( 1 2 x 27) + (22 x 3 1 )  + (32 x 1 9) + (42 x 5)  

= 0 + 27 + 1 24 + 1 7 1 + 80 = 402 

The standard deviation is, therefore: 

· - /(402 - 1 662/ 1 00) _ / 1 26.44 _ · 3 s - v 99 - v 99 - l . l 

I f  a variable has been grouped when constructing a freq uency distribution, i t s  
mean and standard deviation should be calculated using the original values, not 
the frequency distribution. There are occasions, however, when only the frequency 
distribution is  available. In such a case, approximate values for the mean and 
standard deviation can be calculated by using the values of the mid-points of the 
groups and proceeding as above. 

4 . 5  S A M P L I N G  V A R I ATI O N  A N D  STA N D A R D  E R R O R  

As discussed i n  Chapter 2, the sample is of interest not i n  i ts own right, but for  
what i t  tells the  investigator about the population which i t  represents. The sample 
mean, x, and standard deviation, s, are used to estimate the mean and standard 
deviation of the population, denoted by the Greek letters µ (mu) and a ( s igma) 
respectively. 

The sample mean is unlikely to be exactly equal to the population mean. A 
different sample would give a different estimate, the difference being due to 
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sampling variation. Imagine collecting many independent samples of the same size 
from the same population, and calculating the sample mean of each of them. A 
frequency distribution of these means (called the sampling distribution) could then 
be formed . I t  can be shown that: 
1 the mean of this frequency distribution would be the population mean, and 
2 the standard deviation would equal er/ Jn .  This is  called the standard error of 

the sample mean, and it measures how precisely the population mean is 
estimated by the sample mean. The size of the standard error depends 
both on how m uch variation there is in the population and on the size of the 
sample. The larger the sample size 11 , the smaller is the standard error. 

We seldom k now the population standard deviation, er, however, and so 
we use the sample standard deviation, s, in  its place to estimate the standard 
error .  

Example 4.3 

s s .e. = ; vn 

The mean of the eight plasma volumes shown i n  Table 4 .  l is 3 .00 l i tres (Example 
4 . 1 )  and the standard deviation is 0 . 3 1  l itres (Example 4 .2) .  The standard error of 
the mean is therefore estimated as: 

s/ Jn = 0 .3 1 / JS = 0. 1 1  litres 

Understanding standard deviations and standard errors 

Example 4.4 
Figure 4. 1 shows the results of a game played with a class of 30 students to 
i l lustrate the concepts of sampling variation, the sampling distribution, and stand
ard error. B lood pressure measurements for 250 airline pilots were used, and 
served as the population in  the game. The distribution of these measurements is  
shown in Figure 4 . 1 (a) .  The population mean, �l, was 78 .2 mmHg, and the popu
lation standard deviation, er, was 9.4 mmHg. Each value was written on a small 
disc and the 250 discs put into a bag. 

Each student was asked to shake the bag, select ten discs, write down the ten 
d iastolic blood pressures, work out their mean, x, and return the discs to the bag. 
In this way 30 different samples were obtained, with 30 different sample means, 
each estimating the same population mean. The mean of these sample means was 
78 .23 mrnHg, close to the population mean. Their distribution is shown in Figure 
4. l (b ) .  The standard deviation of the sample means was 3 .0 1 mrnHg, which agreed 
well with the theoretical value, er/ yin = 9.4/ J I 0 = 2.97 mmHg, for the standard 
error of the mean of a sample of size ten. 



40 Chapter 4: Means, standard deviations and standard errors 

( a )  D istr ibut ion of d i asto l ic  blood pressu re for a population of 
250 a i r l i n e  p i lots 

28 

24 

> 20 
u � 1 6  
:l g 1 2  

U: 8 

4 

0 
50 60 70 80 

µ = 78.2 m m H g  

a =  9 . 4  m m H g 

1 00 

Diasto l i c  b lood pressu re ( m m H g )  

(b )  S a m p l i n g  d istr ibution for 30 sample means, s a m p l e  size = 1 O 
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C" Q) ..... u.. 

> () c Q) :l C" Q) ..... u.. 

1 0  

8 
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0 
50 60 

Mean (sample means)  = 78.23 m m H g  

s . d .  (sample means)  = 3.01  m m H g  
s .e .  ( theoretica l ) = 9 . 4/J1 0 = 2 . 97 m m Hg 

90 1 00 

Di asto l ic  blood pressu re ( m m H g )  

(c)  S a m p l i ng d i str ibution for 3 0  s a m p l e  means, s a m p l e  size = 2 0  
1 2  

1 0  
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6 

4 

2 

0 
50 60 70 

Mean ( sa m p l e  means) = 78. 1 4  m m Hg 

s .d .  (sa m p l e  means) = 2.07 m m H g  

s . e .  (theo retica l ) = 9.4/J20 = 2 . 1 0  m m H g 

90 1 00 

Di asto l ic  blood pressu re ( m m H g )  

Fig. 4 . 1  Results o f  a game played to i l lustrate the concepts o f  sampling variation, the sampling distribution, 

and the standard error. 

The exercise was repeated taking samples of size 20. The results are shown 
in Figure 4. l (c) .  The reduced variation in the sample means resulting from increas
ing the sample size from l 0 to 20 can be clearly seen . The mean of the sample means 
was 78 . 1 4  mm Hg, again close to the population mean . The standard deviation was 
2 .07 mrnHg, again in  good agreement with the theoretical value, 9 .4/\!'20 = 
2 . 1 0  mmHg, for the standard error of the mean of a sample of size 20. 
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In this game, we had the luxury of results from several different samples, and 
could draw the sampling distribution. Usually we are not in  this position: we have 
just one sample that we wish to use to estimate the mean of a larger population, 
which i t  represents. We can draw the frequency distribution of the values in  our 
sample (see, for example, Figure 3.3 of the histogram of haemoglobin levels of 70 
women). Providing the sample size is not too small, this frequency distribution will 
be similar in  appearance to the frequency distribution of the underlying popula
tion, with a similar spread of values. In particular, the sample standard deviation 
will be a fairly accurate estimate of the population standard deviation .  As stated in 
Section 4.2, approximately, 95% of the sample values wil l  lie within two standard 
deviations of the sample mean. Similarly, approximately 95% of all the values in 
the population wil l  lie within this same amount of the population mean. 

The sample mean wil l not be exactly equal to the population mean. The 
theoretical distri bu t i  on called the sampling distribution gives us the spread of 
values we would get if we took a large number of additional samples; this spread 
depends on the amount of variation in the underlying population and on our 
sample size. The standard deviation of the sampling distribution is called the 
standard error and is equal to the standard deviation of the population, divided 
by the square root of n.  This means that approximately 95% of the values in this 
theoretical sampling distribution of sample means l ie within two standard errors 
of the population mean. This fact can be used to construct a range of likely values 
for the (unknown) population mean, based on the observed sample mean and its 
standard error. Such a range is called a confidence interval. I ts method of con
struction is not described until Chapter 6 since it depends on using the normal 
distribution, described in Chapter 5. In summary : 
• The standard deviation measures the amount of variabil ity in the population . 
• The standard error (= standard deviation !Jn)  measures the amount of vari

abil ity in  the sample mean; i t  indicates how closely the population mean is 
l ikely to be estimated by the sample mean. 

• Because standard deviations and standard errors are often confused it is  very 
important that they are clearly labelled when presented in tables of results . 
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5 . 1  I NT R O D U CT I O N  

Frequency d istributions and their various shapes were discussed i n  Chapter 3 .  In 
practice it is found that a reasonable description of many variables is provided by 
the normal distribution, sometimes called the Gaussian distribution after i ts discov
erer, Gauss. I ts frequency distribution (defined by the normal curve) is symmetrical 
about the mean and bell-shaped; the bell is tall and narrow for small standard 
deviations and short and wide for large ones. Figure 5 . 1 i l lustrates the normal 
curve describing the d istribution of heights of adult men in  the United K ingdom.  
Other examples of variables that are approximately normally distributed are 
blood pressure, body temperature, and haemoglobin level .  Examples of variables 
that are not normally distributed are triceps skinfold thickness and i ncome, both 
of which are positively skewed . Sometimes transforming a variable, for example by 

6.0 

a =  6.5 cm 

� 4.0 
ra -
c: 
(I) 
(.) ..... 
(I) 
a. 2.0 

µ= 
1 71 .5 cm 

0·0_1-1...,.50-==----1 �60 _____ 1 7.,.,_o--L-___ 1_sr-o----1-=;9r-o 

Height (cm) 

Fig. 5 . 1  Diagram showing the approximate normal curve describing the distribution of heights of adult men. 
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taking logarithms, wil l  make its distribution more normal . This is described in 
Chapter 1 3 , and methods to assess whether a variable is normally distributed are 
discussed in Chapter 1 2 . 

5 . 2  W H Y  T H E  N O R M A L  D I ST R I B UTI O N  I S  I M P O RTA NT 

The normal distribution is important not only because i t  is a good empirical 
description of the d istribution of many variables, but because i t  occupies a central 
role in statistical analysis. This is because it can be shown that the sampling 
distribution of a mean is normal, even when the individual observations are not 
normally distributed, provided that the sample size is not too smal l .  In other 
words, sample means wil l  be normally distributed around the true population 
mean . A practical demonstration of this property can easily be had by carrying out 
a sampling game l ike Example 4.4, but with the 250 blood pressures replaced by a 
non-normally d istributed variable, such as triceps skinfold thickness. The larger 
the sample selected in the game, the closer the sample mean will be to being 
normally distributed. The number needed to give a close approximation to nor
mality depends on how non-normal the variable is, but in most circumstances a 
sample size of 1 5  or more is enough . 

This finding is based on a remarkable and very useful result known as the 
central limit theorem. It means that calculations based on the normal d istribution 
are used to derive confidence intervals, which were mentioned in Chapter 4, are 
defined ful ly in Chapter 6 and used throughout subsequent chapters. The normal 
distribution also underlies the calculation of P-values, which are used to test 
hypotheses and which are introduced in Chapter 7. The normal distribution is 
not only important in  the analysis of numerical outcomes; we will see in  parts C 
and D that statistical methods for proportions and rates are also based on 
approximations to the normal distribution. 

For these reasons i t  is important to describe the principles of how to use the 
normal distribution in  some detail before proceeding further. The precise math
ematical equation which defines the normal distribution is included in  the next 
section for reference only; this section can be sk ipped by the majority of readers. 
In practical terms, calculations are carried out either by a statistical package, or by 
using standard tables. 

5 . 3  T H E  E Q U ATI O N  O F  TH E N O R M A L  C U R V E  

The value o f  the normal curve with mean �i and standard deviation a is :  

_ _ l (-(x - µ)2) 
Y - I exp 2 ? 

v 27fa2 a-
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where y gives the height of the curve, x is any value on the horizontal axis, exp ( ) 
is the exponential function (see Section 1 3 .2  for an explanation of the exponential 
function) and 7r = 3 . 1 4 1 59. The normal curve value y is expressed as a proportion 
and the total area under the curve sums to 1 ,  corresponding to the whole 
population. 

The vertical axis can be expressed as a percentage, as in  Figure 5 . 1 ,  by multi
plying y by l 00. The area under the curve then sums to 1 00%. 

Example 5. 1 
The fol lowing give two examples of calculating the height of the curve in Figure 
5 . 1 ,  where µ =  1 7 1 . 5 and a =  6.5 cm. 

1 When height x = 1 7 1 . 5 cm (the mean value) then (x - µ) = 0. This means that 
the expression inside the bracket is  zero. As exp(O) = 1 ,  the height of the curve is 
given by 

1 y = / = 0.06 1 4, or 6 . 1 4% 
v 27r x 6.52 

2 When height x = 1 80 cm, the exponential part of the equation is (- ( 1 80 - 1 7 1 . 5)2) = 0 42 3 exp 
2 x 6 .52 . 5 

and the height of the curve is given by 

0.4253 
Y = / = 0.026 1 ,  or 2 .6 1% 

v 27r x 6.52 

These values are indicated by the horizontal dashed l ines on the normal curve in  
Figure 5 . 1 .  

5 . 4 TH E STA N D A R D  N O R M A L  D I ST R I B UTI O N  

I f  a variable i s  normally distributed then a change o f  units does not affect this. 
Thus, for example, whether height is measured in  centimetres or inches i t  is 
normally distributed. Changing the mean simply moves the curve along the 
horizontal axis, while changing the standard deviation alters the height and 
width of the curve. 

I n  particular, by a suitable change of units any normally distributed variable 
can be related to the standard normal distribution whose mean is zero and whose 
standard deviation is 1 .  This is done by subtracting the mean from each observa
tion and dividing by the standard deviation. The relationship is : 



1 50 

5.5 Area under the curve of the normal distribution 45 

u = 6 . 5  cm 

µ = 1 7 1 . 5 cm 

1 65 1 70 1 75 1 80 1 85 1 90 

He ight ( c m )  

- 3  - 2  - 1  0 2 3 

S N D  

Fig. 5 . 2  Relationship between normal distribution i n  original units of measurement and i n  standard normal 

deviates. SND = (height - 1 71 .5 )/6 .5 .  Height = 1 7 1 .5 + (6.5 x SND). 

SND, 
x - µ  

z = -
a 

where x is the original variable with mean µ and standard deviation a, and z is the 
corresponding standard normal deviate (SND), alternatively called the z-score. 

This is i l lustrated for the distribution of adult male heights in Figure 5 .2 .  The 
equation of the standard normal distribution is: 

exp( - z2 /2) 
y = 

J27r 

The possibility of converting any normally distributed variable into an SND means 
that calculations based on the standard normal distribution may be converted to 
corresponding calculations for any values of the mean and standard deviation. 
These calculations may be done either by using a computer, or by consulting tables 
of probability values for the normal distribution . The two most commonly pro
vided sets of tables are (i) the area under the frequency distribution curve, and ( i i )  
the so-called percentage points. 

5 . 5  A R E A U N D E R  T H E  C U R V E  O F  T H E  N O R M A L  D I STR I B UT I O N  

The standard normal distribution can be used t o  determine the proportion o f  the 
population that has values in some specified range or, equivalently, the probability 
that an individual observation from the distribution will l ie in  the specified range. 
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This is done by calculating the area under the curve. Calculation of areas under the 
normal curve requires a computer. I t  can be shown that the area under the whole 
of the normal curve is exactly l ;  in other words the probability that an observation 
l ies somewhere in  the whole of the range is 1 ,  or I 00%. 

Calculation of the proportion of the population in different ranges wi l l  be 
i l lustra ted for the distribution shown in Figure 5. l of the heights of adult men in 
the United Kingdom, which is approximately normal with mean µ = 1 7 1 . 5 cm and 
standard deviation (} = 6 .5  cm. 

Area in upper tail of distribution 

The proportion of men who are taller than 1 80 cm may be derived from the 
proportion of the area under the normal frequency distribution curve that is 
above 1 80 cm. The corresponding SND is : 

z 
= 

1 80 - 1 7 1 . 5 
= 1 . 3 1  6 .5 

so that the proportion may be derived from the proportion of the area of the 
standard normal distribution that is above 1 . 3 1 .  This area is i l lustrated i n  Figure 
5 . 3 (a )  and can be found from a computer or from Table A 1 in  the Appendix. The 
rows of the table refer to z to one decimal place and the columns to the second 
decimal place. Thus the area above 1 . 3 1  is given in row 1 . 3 and column 0 .0 1  and is 
0 .095 1 .  We conclude that a fraction 0 .095 1 ,  or equivalently 9 .5 1 %, of adult men 
are taller than 1 80 cm. 

Area in  lower tail of distribution 

The proportion of men shorter than 1 60 cm, for example, can be similarly estimated : 

z = 
1 60 - 1 7 1 . 5 = - l  .77 6.5 

The required area is i l lustrated in Figure 5 .3(b) . As the standard normal d istribu
tion is symmetrical about zero the area below z = - 1 .  77 is equal to 

LJ951  

0 1 . 3 1  

( a )  Area a bove z = 1 . 3 1  ( b )  Area below z = - 1 . 7 7  
fo und d i re ct ly  fro m equa ls  a rea a bove 
Ta b le  Al z = 1 .77 by symmetry 

1 - 0. 1 587- 0.2946 = 0. 5467 

0 1�46 

- 1  0 0. 5 4  

(c )  Area between z = - 1 
a n d  z = 0.54 fo u nd 
by s u btract ion  

F ig .  5 . 3  Examples o f  the calculation o f  areas o f  the standard normal distribution. 
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the area above z = 1 . 77 and 1s 0.0375. Thus 3 .75% of men are shorter than 
1 60 cm. 

Area of distribution between two values 

The proportion of men with a height between, for example, 1 65 cm and 1 75 cm is 
estimated by finding the proportions of men shorter than 1 65 cm and taller than 
1 75 cm and subtracting these from I .  This is i l lustrated in Figure 5 . 3(c) .  

1 SND corresponding to 1 65 cm is :  

1 65 - 1 7 1 . 5 
z = = - I 6 .5  

Proportion below th is  height is 0 . 1 587 .  

2 SND corresponding to 1 75 cm is :  

z = 
1 75 - 1 7 1 .5 

= 0.54 6.5 

Proportion above this height is 0 .2946. 

3 Proportion of men with heights between 1 65 cm and 1 75 cm 
= 1 - proportion below 1 65 cm - proportion above 1 75 cm 
= I - 0 . 1 587 - 0 .2946 = 0 .5467 or 54.67% 

Value corresponding to specified tail area 

Table A 1 can also be used the other way round, that is starting with an area and 
finding the corresponding z value. For example, what height is  exceeded by 5% or 
0.05 of the population? Looking through the table the closest value to 0.05 is 
found in  row l .6 and column 0.04 and so the required z value is 1 .64. The 
corresponding height is found by invert ing the definit ion of SND to give: 

x = µ + u; 

and is 1 7 1 . 5 + 1 . 64 x 6 .5  = 1 82 .2 cm. 

5 . 6  P E R C E NTA G E  P O I NTS O F  TH E N O R M A L  D I STR I B U T I O N ,  A N D  
R E F E R E N C E  R A N G E S  

The SND expresses the value of a variable in terms of the number of standard 
deviations i t  is away from the mean. This is shown on the scale of the original 
variable in Figure 5.4. Thus, for example, z = 1 corresponds to a value which is 
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one standard deviation above the mean and z = - 1  to one standard deviation 
below the mean. The areas above z = 1 and below z = - 1  are both 0 . 1 587 or 
1 5 . 87%. Therefore 3 1 .74% (2 x 1 5 .87%) of the distribution is further than one 
standard deviation from the mean, or equivalently 68 .26% of the distribution lies 
within one standard deviation of the mean. Similarly, 4 .55% of the d istribution is 
further than two standard deviations from the mean, or equivalently 95 .45% of 
the distribution l ies within two standard deviations of the mean.  This is the 
j ustification for the practical interpretation of the standard deviation given in 
Section 4. 3 .  

Exactly 95% of the distribution lies between - 1 .96 and 1 .96 (Fig 5 .5a ) .  There
fore the z value 1 .96 is said to be the 5% percentage point of the normal distribu
tion, as 5% of the distribution is further than 1 .96 standard deviations from the 
mean (2 .5% in each tail) . Similarly, 2.58 is the 1% percentage point. The com
monly used percentage points are tabulated in Table A2. Note that they could also 
be found from Table A l  in the way described above. 

The percentage points described here are known as two-sided percentage points, 
as they cover extreme observations in both the upper and lower tails of the 
distribution. Some tables give one-sided percentage points, referring to just one 
tail of the distribution. The one-sided a% point is the same as the two-sided 2a% 

- 3  - 2  - 1  

µ. - 3 a  µ. -2a µ.- a  

0 

S N D  

µ. 

2 

µ. + a  µ. + 2a µ. + 3a 

Fig. 5.4 I nterpretation of SND in terms of a scale showing the number of standard deviations from the 

mean. 
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Fig. 5.5  Percentage points of the normal distribution. 
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point ( Figure 5 .5b) .  For example, l .96 is the one-sided 2 .5% point, as 2 . 5% of the 
standard normal d istribution is above 1 .96 (or equivalently 2 . 5% is below - 1 .96) 
and i t  is  the two-sided 5% point. This difference is d iscussed again in Section 7 .3  in 
the context of hypothesis tests. 

These properties mean that, for a normally distributed population, we can 
derive the range of values within which a given proportion of the population 
will l ie .  The 95% reference range is given by the mean - 1 .96 s.d. to mean 
+ 1 .96 s.d., since 95% of the values in a population lie in this range. We can also 
define the 90% reference range and the 99% reference range in the same way, as 
mean - l .64 s .d .  to mean + l .64 s.d. and mean -2.58 s .d .  to mean +2.58 s .d . ,  re
spectively. 

5 . 7  U S I N G  Z- S C O R E S  TO C O M PA R E  DATA W I T H  R E F E R E N C E  C U R V E S  

SNDs and z-scores are also used as a way o f  comparing the values o f  a variable 
with those of reference curves. The analysis is then carried out using the z-scores 
rather than the original values. For example, this is commonly carried out for 
anthropometric data, where growth charts are used to assess where an ind ividual's 
weight (or height) l ies compared to standard values for their age and sex, and the 
analysis is in terms of weight-for-age, height-for-age or weight-for-height z-scores. 
This use of z-scores is  described in Section 1 3 .4, in the chapter on transformations. 
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6 . 1  I NT R O D U CTI O N  

I n  Chapter 4 we explained the idea of sampling variation and the sampling distribu
tion of the mean .  We showed that the mean of this sampling distribution equals the 
population mean, µ, and its standard deviation equals rJ / jn, where rJ is the 
population standard deviation, and n is the sample size. We introduced the concept 
that this standard deviation, which is  called the standard error of the sample mean,  
measures how precisely the population mean is estimated by the sample mean. We 
now describe how we can use the sample mean and its standard error to give us a 
range of l ikely values for the population mean, which we wish to estimate. 

6 . 2  L A R G E  S A M P L E  C A S E  ( N O R M A L  D I ST R I B UTI O N )  

In Chapter 4 ,  we stated that approximately 95% o f  the sample means i n  the 
distribut ion obtained by repeated sampling would l ie within two standard errors 
above or below the population mean .  By drawing on the finding presented i n  
Chapter 5 ,  that provided that the sample size i s  no t  too smal l ,  this sampling 
distribution is a normal distribution, whether or not the underlying population 
distribution is  normal ,  we can now be more precise. We can state that 95% of 
the sample means would lie within 1 .96 standard errors above or below the 
population mean, since 1 .96 is the two-sided 5% point of the standard normal 
d istribution. This means that there is  a 95% probability that a particular sample 
mean (x) l ies within 1 .96 standard errors above or below the population mean (µ), 
which we wish to estimate: 

Prob(x is in the range µ - 1 .96 x s.e. to µ + 1 .96 x s .e . )  = 95% 

In practice, this result is used to estimate from the observed sample mean (x) and 
its standard error (s .e . )  a range within which the population mean is l ikely to l ie. 
The statement: 
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'x i s  in the range µ - 1 . 96 x s.e . to µ + 1 .96 x s .e . '  

is equivalent to the statement: 

'µ is in the range x - 1 . 96 x s .e .  to x + 1 .96 x s .e . '  

Therefore there is a 95% probabil i ty that the interval between x - 1 . 96 x s .e .  and 
x + 1 .96 x s .e .  contains the (unknown) population mean. This interval is  called a 
95% confidence interval (C l )  for the population mean, and x - 1 .96 x s .e .  and 
x + 1 .96 x s.e. are called upper and lower 95% confidence limits for the population 
mean, respectively. 

When the sample is large, say n greater than 60, not only is the sampling 
distribution of sample means well approximated by the normal distribution, but 
the sample standard deviation, s, is a reliable estimate o.f the population standard 
deviation, O', which is usually also not known. The standard error of the sample 
mean, O"j Jn , can therefore be estimated by s/ Jn .  

Large-sample 95% CI = X. - ( 1 .96 x s/ Jn ) to x + ( 1 .96 x s/ Jn) 

Confidence interva ls for percentages other than 95% are calculated in the same 
way using the appropriate percentage point, z' , of the standard normal d istribu
tion in place of 1 .96 ( see Chapter 5). For example: 

Large-sample 90% CI = x - ( 1 .64 x s/ Jn) to x + ( 1 .64 x s/ Jn) 

Large-sample 99% CI = x - (2 .58 x s/ Jn) to x + (2 .58 x s/ Jn) 

Example 6. 1 
As part of a malaria control programme it was planned to spray all the 1 0  000 
houses in a rural area with insecticide and it was necessary to estimate the amount 
that would be required . Since i t  was not feasible to measure all 1 0  000 houses, a 
random sample of J 00 houses was chosen and the sprayable surface of each of 
these was measured. 

The mean sprayable surface area for these 1 00 houses was 24.2 1112 and the 
standard deviation was 5.9 m2 . I t  is unlikely that the mean surface area of this 
sample of I 00 houses (x) exactly equals the mean surface area of all 1 0  000 houses 
(µ). Its precision is  measured by the standard error O' / Jn, estimated by s/ Jn = 
5 .9/JI OO = 0.6 m2 . There is a 95% probabil ity that the sample mean of  24.2 m2 

differs from the population mean by less than 1 . 96 s .e .  = l .96 x 0.6 = 1 .2 m2 . The 
95% confidence in terval is :  
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95% CI  = x - 1 .96 x s.e . to x + 1 .96 x s.e . 

= 24.2 - 1 .2 to 24.2 + 1 .2 = 23 .0 to 25 .4 m2 

I t  was decided to use the upper 95% confidence l imit in budgeting for the 
amount of insecticide required as i t  was preferable to overest imate rather than 
underestimate the amount. One l itre of insecticide is sufficient to spray 50 m2 and 
so the amount budgeted for was : 

1 0 000 x 25.4/50 = 5080 l itres 

There is  sti l l  a possibility, however, that this is  too l i tt le insect icide. The interval 
23 .0 to 25 .4 m2 gives the l ikely range of values for the mean surface area of al l  
10 000 houses. There is a 95% probabi l ity that this interval contains the popula
tion mean but a 5% probabil i ty that it does not, with a 2 . 5% probabil i ty 
(0 .5 x 5%) that the estimate based on the upper confidence l imit is  too smal l .  A 
more cautious estimate for the amount of insecticide required would be based on a 
wider confidence interval ,  such as 99%, giving a smaller probabil i ty (0 .5%) that 
too l ittle would be estimated. 

6 . 3  I N T E R P R E T AT I O N  O F  C O N F I D E N C E  I N T E RV A L S  

We stated in  Chapter 2 that our aim i n  many statistical analyses is  t o  use the 
sample to make inferences about the population from which it was drawn . Confi
dence intervals provide us with a means of doing this ( see Fig. 6 . 1 ) . 

I t  is tempting to interpret a 95% CI by saying that ' there is a 95% probabil i ty 
that the population mean lies within the CI ' .  Formally, this is not quite correct 
because the population mean (µ) is a fixed unknown number: it is the confidence 

Population 

Confidence interval 

Sam ple 
Fig.  6 . 1  Use of confidence intervals to make inferences about the population from which the sample was 

drawn. 
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* 

µ 
= 24.2 m2 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1- - - - - - - - - - - - - - - - - - -
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Sample 

Fig. 6 . 2  Mean sprayable areas, with 9 5 %  confidence intervals, from 20 samples o f  1 00 houses in a rural 

area. The star indicates that the Cl does not contain the population mean. 

interval that will vary between samples. In other words, if we were to draw several 
independent, random samples from the same populat ion and calculate 95% confi
dence intervals from each of them, then on average 1 9  of every 20 (95%) such 
confidence intervals would contain the t rue population mean,  and one of every 20 
(5%) would not .  

Example 6.2 
A further 1 9  samples, each of 1 00 houses, were taken from the 1 0 000 
houses described in Example 6. 1 .  The mean sprayable surface and its standard 
error were calculated from each sample, and these were used to derive 95% 
confidence intervals. The means and 95% CJs from all 20 samples are shown in 
Figure 6 .2 .  The mean in  the whole population ({l  = 24.2 m2 ) is shown by a 
horizontal dashed line. The sample means vary around the population mean µ, 
and one of the twenty 95% confidence intervals (indicated by a star) does not 
contain {l .  

6 . 4  S M A L L E R  S A M P L E S  

I n  the calculation o f  confidence intervals so far described the sample size (n )  has 
been assumed to be large (greater than 60). When the sample size is not large, two 
aspects may alter: 
1 the sample standard deviation, s, which is itself subject to sampling variation, 

may not be a rel iable estimate for O"; 
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2 when the distribution in the population is not normal, the distribution of the 
sample mean may also be non-normal. 

The second of these effects is of practical importance only when the sample size is  
very smal l  ( less than, say, 1 5) and when the distribution in the population is  
extremely non-normal .  Because of the central l imit  theorem (see Chapter 5) ,  it is 
usually only the first point, the sampling variation in s, which invalidates the use 
of the normal d istribution in the calculation of confidence intervals .  Instead, a 
d istribution called the t distribution is used. Strictly speaking, this is valid only if  
the population is normally distributed, but  the use of the t distribution has been 
shown to be justified, except where the population is extremely non-normal .  (This 
property is  called robustness. )  What to do in cases of severe non-normality is  
described later in this chapter. 

Confidence interval using t distribution 

The earl ier calculation of a confidence interval using the normal distribution was 
based on the fact that (x - µ)/(a/ Jn) is a value from the standard normal 
distribution, and that for large samples we could use s in  place of (}. In fact, 
(x - {t)/(s/ Jn) is a val ue not from the standard normal d istribution but from a 
d istribution called the t distribution with (n - 1 )  degrees of freedom. This d istribu
t ion was in troduced by W. S .  Gossett, who used the pen-name 'Student', and is 
often called Student's t distribution. Like the normal distribution, the t d istribu
tion is a symmetrical bell-shaped distribution, but i t  is  more spread out, having 
longer tails (Figure 6 .3 ) .  

The exact shape of the t distribution depends on the degrees of freedom (d .f. ) ,  
n - 1 ,  of the  sample standard deviation s ;  the fewer the  degrees of freedom, the 
more the I distribution is spread out .  The percentage poin ts are tabulated for 
various degrees of freedom in Table A3 in the Appendix. For example, i f  
t he  sample size is  8 ,  the degrees of freedom are 7 and the two-sided 5'% point i s  
2 .36 .  I n  this case the 95% confidence interval using the sample standard deviation 
s would be 

95% CI = x - 2.36 s/Jn to x + 2.36 s/Jn 

/. /, h 
/ 

I I / 

Normal  d i st r ibut ion  

/J-, / ..... / ..... / ' 
/ ' t d i st r ibut ion  with  5 d . f. 

Fig. 6.3 t distribution with 5 degrees of freedom compared to the normal distribution. 
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In general a confidence interval is calculated using t', the appropriate percentage 
point of the t distribution with (n - 1 )  degrees of freedom . 

Small-sample CI = x - ( t' x s/ /n ) to x + ( t' x sf. Jn) 

For small degrees of freedom the percentage points of the t distribution are 
appreciably larger in value than the corresponding percentage points of the normal 
d istribut ion . This is  because the sample standard deviation s may be a poor 
estimate of the population value a, and when this uncerta inty is  taken into account 
the resulting confidence interval is considerably wider than i f  a were reliably 
known. For large degrees of freedom the I distribution is almost the same as the 
standard normal distribution, since s is a good estimate of a. The bottom row of 
Table A3 in the Appendix gives the percentage points for the t distribution with an 
infinite number (oo) of degrees of freedom and it may be seen by comparison with 
Table A2 that these are the same as for the normal distribution. 

Example 6.3 
The following are the numbers of hours of relief obtained by six arthrit ic patients 
after receiving a new drug: 

2 .2 ,  2 .4, 4.9, 2 .5 ,  3 . 7 ,  4.3 hours 

x = 3 . 3  hours, s = l . 1 3 hours, n = 6, d .f .  = n - 1 = 5 

s/ .Jn = 0.46 hours 

The 5% point of the t distribution with 5 degrees of freedom is 2.57, and so the 
95% confidence interval for the average number of hours of rel ief for arthritic 
patients in  general is: 

3 . 3  - 2 .57 x 0.46 to 3 . 3  + 2 .57  x 0.46 = 3.3 - 1 .2 to 3 . 3  + 1 . 2 = 2 . 1 to 4.5 hours 

Severe non-normality 

When the distribution in the population is markedly non-normal (see Section 
1 2 .2 ) ,  it may be desirable to transform the scale on which the variable x is 
measured so as to make its distribution on the new scale more normal (see Chapter 
1 3 ) .  An alternative is  to calculate a non-parametric confidence interval or to use 
bootstrap methods (see Chapter 30) .  

6 . 5  S U M M A R Y  OF A LT E R N AT I V E S  

Table 6 . 1 summarizes which procedure should be  used i n  constructing a confi
dence interval .  There is  no precise boundary between approximate normality and 
non-normality but, for example, a reverse J-shaped distribution ( Fig. 3 .6b) is 
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Table 6.1 Recommended procedures for constructing a confidence interval. (z' is the percentage point from the 

normal distribution, and t' the percentage point from the t distribution with (n - 1 )  degrees of freedom.) 

(a) Population standard deviation CT unknown. 

Sample size 

60 or  more 

Less than 60 

Population distribution 

Approximately normal 

x - (z' x s/Jn) to x +  (z' x s/Jn) 

x - (t' x s/ Jn) to x + (t'  x s/ Jn) 

Severely non-normal* 

x - (z' x s/Jn) to x + (z' x s/Jn) 

see Chapter 30 

(b) Population standard deviation C T  known. 

Sample size 

1 5  or more 

Less than 1 5  

Population distribution 

Approximately normal 

x - (z' x u/Jn) to x + (z' x u/Jn) 

x - (z' x u/Jn) to x +  (z' x u/Jn) 

Severely non-normal* 

x - (z' x u/ Jn) to x + (z' x u/ Jn) 

see Chapter 30 

* I t  may be preferable to transform the scale of measurement to make the distribution more normal (see 

Chapter 1 3). 

severely non-normal, and a skewed distribution (Fig. 3 .5b or c) is moderately non
normal .  

In  rare instances the population standard deviation, a ,  i s  known and therefore 
not estimated from the sample. When this occurs the standard normal distribution 
percentage points are used to give the confidence interval regardless of sample size, 
provided the population distribution is not severely non-normal (in which case see 
the preceding paragraph) .  

6 . 6  C O N F I D E N C E  I N T E R V A L S  A N D  R E F E R E N C E  R A N G E S  

I t  i s  important to understand the d istinction between the reference range (which 
was defined in  Section 5 .6) and confidence intervals, defined in  th is chapter. 
Although they are often confused, each has a different use and a different defini
t ion. 

A 95% reference range is  given by: 

95% reference range = µ - 1 .96 x s.d. to µ + 1 . 96 x s .d .  

where µ is the mean of the distribution and s .d. is its standard deviation. A large 
sample 95% confidence interval is given by: 

95% CI = .X - 1 .96 x s.e. to .X + 1 .96 x s .e .  

where s.e . is  the standard error of the distribution: s .e . = s .d .jjn.  
The reference range tells us about the variability between ind ividual observa

tions in the population : providing that the d istribution is approximately normal 
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95% of individual observat ions will l ie within the reference range. In contrast, as 
explained earlier in this chapter, the 95% CI tells us a range of plausible values for 
the population mean, given the sample mean. Since the sample size n must be > I ,  
the confidence i nterval wil l always be narrower than the reference range. 
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difference between two means 7 .5 Smal l  samples, unequal  standard 
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distribution (large samples 7.6 Paired measurements 

or  known standard deviations) Confidence interval 

Confidence interval Hypothesis test 

z-test 

7.4 Methods based on the 

t distribution (small samples, 

equal standard deviations) 

7 . 1  I N T R O D U C T I O N  

In  Chapter 6 we described how t o  use a sample mean and its standard error t o  give us  
a range of l ikely values, called a conjldence interval, for the corresponding popula
tion mean. We now extend these ideas to situations where we wish to compare the 
mean outcomes in  two exposure (or treatment) groups. We will label the two groups 
0 and 1 ,  and the two means x0 and x1 , with group 1 denoting individuals exposed to a 
risk factor, and group 0 denoting those unexposed. In cl inical trials, group 1 wil l  
denote the treatment group and group 0 the control group. For example: 
• In a study of the determinants of birthweight, we may wish to compare the 

mean birth weight of children born to smokers ( the exposed group, 1 )  with that 
for children born to non-smokers (the unexposed group, 0). 

• In a cl inical trial of a new anti-hypertensive drug, the comparison of interest 
might be mean systolic blood pressure after 6 months of treatment, between 
patients al located to receive the new drug (the treatment group, 1 )  and those 
allocated to receive standard therapy ( the control group, 0) .  

The two group means, x1 and x0, are of interest not in  their own right, but  for  
what they tell us more generally about the effect of the  exposure on the  outcome of 
interest (or in  the case of a clinical trial, of the treatment ) ,  in the population from 
which the groups are drawn. More specifically, we wish to answer the fol lowing 
related questions. 
I What does the difference between the two group means in  our sample (.X1 and 

.Xo) tell us about the difference between the two group means in  the population? 
I n  other words, what can we say about how much better (or worse) off are 
exposed individuals compared to unexposed? This is  addressed by calculating a 
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confidence interval for the range of l ikely va lues for t he difference, fol lowing a 
similar approach to that used for a single mean (see Chapter 6 ) .  

2 Do the  data provide evidence that the exposure actually affects the  outcome, or  
might the  observed difference between the  sample means have arisen by chance? 
In other words, are the data consistent with there being zero difference between 
the means in t he two groups in the population? We address this by carrying out 
a hypothesis (or sig11ifica11ce) test to give a P-value, which is  the probabil ity of 
record ing a difference between the two groups at least as large as that in  our 
sample, i f  there was no effect of the exposure in the population .  

In  this chapter we define the sampling distribution of the difference in  means 
comparing the two groups, and then describe how to use this to calculate a 
confidence in terval for the true difference, and how to calculate the test 
statist ic and P-value for the related hypothesis test. The methods used are based 
on either the normal or t distributions. The rules for which distribution to use are 
similar to those for  the one-sample case. For large samples, or known standard 
deviations, we use the normal distribution, and for small samples we use the 
t distribution . 

The majority of this chapter is concerned with comparing mean outcomes 
measured in two separate groups of individuals. In some circumstances, however, 
our data consist instead of pairs of outcome measurements. How to compare 
paired measurements i s  covered in Section 7 .6 .  For example: 
• We might wish to carry out a study where the assessment of an anti

hypertensive drug is based on comparing blood pressure measurements in  a 
group of hypertensive men, before and after they received treatment. For each 
man, we therefore have a pair of outcome measures, blood pressure after 
treatment and blood pressure before treatment. It is important to take this 
pairing in  the data into account when assessing how much on average the 
treatment has affected blood pressure. 

• Another example would be data from a matched case-control study (see 
Section 2 1 .4), in which the data consist of case-control pairs rather than of 
two independent groups of cases and controls, with a control specifically 
selected to match each case on key variables such as age and sex. 

7 . 2  S A M P L I N G  D I S T R I B U T I O N  O F  T H E  D I F F E R E N C E  B E TW E E N  
T W O  M E A N S  

Before we can construct a confidence interval for the di fference between two 
means, or carry out the related hypothesis test ,  we need to know the sampling 
d istribution of the difference. The difference, x1  - .Xo , between the mean outcomes 
in the exposed and unexposed groups in our sample provides an estimate of the 
underlying difference, µ 1 - {lo , between the mean outcomes in  the exposed and 
unexposed groups in the population . Just as discussed for a single mean (see 
Chapter 6) , this sample difference will not be exactly equal to the population 
difference. It is subject to sampling variation, so that a different sample from the 
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same population would give a different value of x1 - x0 . Providing that each of the 
means, x1 and x0, is normally distributed, then: 
1 the sampling distribution of the difference (x 1 - xo ) is normally d istrib

uted; 
2 the mean of this sampling dist ribution is simply the difference between the two 

population means, µ1 - µo ; 
3 the standard error of (x 1 - x0 ) is based on a combination of the standard errors 

of the individual means: 

J( J J
) 

J 
J 

a1 a5 
s .e .  = J(s.e.T + s.e.0 )  = - + -

n1  no 

This is estimated using the sample standard deviations, s1 and s0 . Note that when 
we calculate the difference between the means in the two groups we combine the 
uncertainty in x 1  with the uncertainty in x0 . 

7 . 3  M E T H O D S  B A S E D  O N  T H E  N O R M A L  D I S T R I B U T I O N  ( L A R G E  
S A M P L E S  O R  K N O W N  S TA N D A R D  D EV I A T I O N S ) 

Confidence i nterval 

When both groups are large (say, greater than 30), or in the rare i nstances when 
the population standard deviations are known, then methods for comparing 
means are based on the normal distribution. We calculate 95% confidence inter
vals for the difference in the population as: 

or 

Large samples 

CI = (x1 - .Xo) - (z' x s .e . )  to (xi - .xo)  + (z' x s .e . )  

s .e .  = J(sf/n 1 + .s"6/no) 

Known CT1S 
CI = (.x 1  - .Xo) - (z' x s .e . )  to (x1 - xo) + (z' x s .e . )  

s .e .  = J(af/n 1 + a6/no)  
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I n  these formulae ::.' is the appropriate percentage point of the normal distribution. 
For example, when calculating a 95% confidence interval we use z' = 1 . 96. 

Example 7. 1 
To investigate whether smoking reduces lung function, forced vital capacity ( FVC, 
a test of lung function) was measured in I 00 men aged 25-29, of whom 36 were 
smokers and 64 non-smokers. Results of the study are shown in Table 7 . 1 .  

Table 7 . 1  Resu lts of a study to investigate the association between smoking and lung function. 

Group 

Smokers (1 )  
Non-smokers (O) 

Number of men 

n1 = 36 
no = 64 

Mean FVC (litres) 

x, = 4.7 
xo = 5.0 

s 

51 = 0.6 
So = 0.6 

s.e. of mean FVC 

s .e 1 = 0 .6/)36 = 0. 1 00 
s.e.0 = 0 6/ )64 = 0.075 

The mean FVC in smokers was 4.7 l i tres compared with 5.0 l i tres in  non
smokers. The difference in  mean FVC, x1  - x0 , is therefore 4.7 - 5.0, that is 
-0.3 l itres . The s.d. in  both groups was 0.6 l i tres. The standard error of the 
difference in mean FVC is calculated from the individual standard errors, which 
are shown in the right hand column of the table, as follows: 

s.e. = J (s.e . T + s.e .6 ) = j(0. 1 2  + 0 .07S2) = 0. 1 25 l itres 

The 95% confidence interval for the population difference in mean FVC is there
fore: 

95% CI = -0.3 - ( 1 .96 x 0 . 1 25 )  to - 0.3  + ( 1 .96 x 0 . 1 25 )  

= -0. 545 l i tres t o  -0.055 l i tres 

Both the lower and upper confidence l imits are negative, and both therefore 
correspond to a reduced FVC among smokers compared to non-smokers. With 
95% confidence, the reduction in mean FVC in smokers, compared to non
smokers, l ies between 0.055 l i tres (a relatively small reduct ion) and 0 . 545 l i tres (a 
reduction l ikely to have obvious effects) . 

z-test 

The confidence interval gives a range of l ikely values for the difference in mean 
outcome between exposed and unexposed groups in the population. With reference 
to Example 7. I ,  we now address the related issue of whether the data provide 
evidence that the exposure (smoking) actual ly affects the mean outcome ( FVC),  
or whether they are consistent with smoking having no effect .  I n  other words, might 
the population difference between the two groups be zero? We address this issue by 
carrying out a hypothesis (or significance) test. 
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A hypothesis test begins by postulating that, in the population, mean FVC is 
the same in  smokers and non-smokers, so that any observed difference between 
the sample means is  due to sampling variation. This is  called the null hypothesis. 

The next step is to calculate the probabil ity, (/' the null hypothesis were true, of 
getting a difference between the two group means as large or larger than the 
difference than that was observed. This probability is called a P-value. The idea 
is  that the smaller the P-value, the stronger i s  the evidence against the nul l  
hypothesis. 

We use the fact that the sampling distribution of (xi - .Xo) is normal to 
derive the P-value. If the null hypothesis is true, then the mean of the sampling 
distribution, µ 1 - µ0, is zero. Our test statistic is the z-score, or standard normal 

deviate (see Chapter 5) corresponding to the observed difference between the 
means: 

difference in  means 
- ----------------

standard error of difference i n  means 

The formulae for the z-test are as fol lows: 

or 

Large samples 

s.e . 

Known cr's 

.Xi - xo 
Z == ---

s .e .  

.x, - .Xo 
s .e .  

The test statistic z measures by how many standard errors the mean difference 
(.X 1 - .Xo) differs from the nul l  value of 0. In this example, 

-0.3 
7 - - 2 4 - - -

0 ? 
- - . 

. LS 
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The difference between the means is therefore 2.4 standard errors below 0, as 
i l lustrated in  Figure 7. 1 .  The probability of getting a di fference of -2.4 standard 
errors or less ( the area under the curve to the left of -2.4) is found using a 
computer or using Table A 1 ;  it is 0.0082 . This probabil ity is known as the one

sided P-value. By convention, we usually use two-sided P-values; our assessment  of 
the probabi l i ty that the resul t  is due to chance is based on how extreme the size of 
the departure is from the nul l  hypothesis, and not its direct ion. We therefore 
include the probabil i ty that the difference might (by chance) have been in the 
opposite direction: mean FVC might have been greater in  smokers than non
smokers. Because the normal distribution is symmetrical ,  this probabi l i ty is  also 
0.0082. The 'two-sided ' P-value is thus found to be 0.0 1 64 ( = 0.0082 + 0.0082), as 
shown in  Figure 7 . 1 .  

This means that the probability of observing a difference at least as extreme as 
2 .4, if the null hypothesis of no difference is correct, is 0.0 1 64, or 1 . 64%. In other 
words, i f  the null hypothesis were t rue, then sampling variation would yield such a 
large difference in the mean FVC between smokers and non-smokers in only about 
1 6  in every 1 000 similar-sized studies that might be carried out. Such a P-value 
provides evidence against the null hypothesis, and suggests that smoking affects 
FVC. 

At this point, you may 1 1 1ish to skip forward to Chapter 8, 1 1 1hich gives a fi1ller 
description of how to interpret P-values, and ho11 1  to use P-values and confi:dence 
intervals to interpret the results of statistical analyses. 

0.4 

0.3 

0.2 

0 . 1  
P($- 2.4 ) = 0.0082 

-4 -3 -2.4 -2 -1 

P-value = 0.0 1 64 

P(�2.4) = 0.0082 

0 2 2 .4 3 4 

Standard errors 

Fig. 7.1 Probability that the size of a standard normal deviate (z) is 2 .4 standard errors or larger. 
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7 . 4  M E T H O D S  B A S E D  O N  T H E  t D I S T R I B U T I O N  ( S M A L L  
S A M P L E S ,  E Q U A L  S TA N D A R D  D EV I AT I O N S )  

We saw i n  Chapter 6 that for small samples we must also allow for the sampling 
variation in the standard deviation, s, when deriving a confidence interval for a 
mean. Similar considerations arise when we wish to compare means between small 
samples. Methods based on the t distribution rather than the normal d istribution 
are used . These require that the population distributions are normal but, as with 
confidence intervals for a single mean, they are robust against departures from this 
assumption. When comparing two means, the validity of these methods 
also depends on the equality of the two population standard deviations. In 
many situations i t  is reasonable to assume this equality.  If the sample standard 
deviations are very different in size, however, say if one is more than twice as 
large as the other, then an alternative must be used . This is discussed below in 
Section 7 .5 .  

Confidence interval 

The formula for the standard error of the difference between the means is  simpli
fied to: 

s .e . = J(a2 /n 1 + a2 /no) or av( I /n 1 + I /no )  

where a i s  the  common standard deviation. There are two sample estimates of a 
from the two samples, s1 and so and these are combined to give a common 
estimate, s, of the population standard deviation, with degrees of freedom equal 
to (n1 - 1 )  + (no - I ) = n1 + no - 2. 

s = f [(n 1 - l )sT + (no - l )s6] V (n 1  + no - 2)  

This formula gives greater weight to the estimate from the larger sample as this 
will be more rel iable. The standard error of the difference between the two means 
is  estimated by: 

s .e . = sv/( l /n 1 + 1 /no ) 

The confidence interval is calculated using t', the appropriate percentage point of 
the t distribution with (n 1  + no - 2) degrees of freedom: 
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CI = (x 1 - x0) - ( t' x s .e . )  to (x1 - x0) + ( t' x s .e . ) ,  

d . f .  = (11 1 + no - 2) 

Table 7 .2 shows the birth weights of children born to 14 heavy smokers (group l )  
and to 1 5  non-smokers (group 0), sampled from live births at a large teaching 
hospital .  The calculations needed to derive the confidence interval are: 

difference between the means, .X1 - .Xo = 3 . 1 743 - 3 . 6267 = -0.4524 ) [ 1 3  x 0 .463 1 2  + 1 4  x 0 .35842] standard deviation, s = 
4 ? = 0 .4 1 2 1  kg 

1 5  + I  - -
standard error of the difference, s .e .  = 0 .4 1 2 1  x ,/( I /  1 4  + I /  1 5 ) = 0 . 1 53 1  kg 

degrees of  freedom, d . f . = 1 4  + 1 5  - 2 = 27; t ' = 2 .05 

The 5% percentage point of the t distribution with 27 degrees of freedom is 2.05, 
and so the 95% confidence in terval for the difference between the mean birth 
weights is: 

-0.4524 - (2 .05 x 0 . 1 53 1 )  to -0.4524 + (2 .05 x 0 . 1 53 1 )  = -0.77 to - 0. 1 4 kg 

Table 7.2 Comparison of birth weights (kg) of children born to 
1 4  heavy smokers with those of children born to 1 5  non-smokers. 

Heavy smokers (group 1 )  Non-smokers (group O) 

3 . 1 8 3.99 

2 .74 3.89 

2.90 3.60 

3.27 3.73 

3.65 3.31 

3.42 3.70 

3.23 4.08 

2.86 3.61 

3.60 3.83 

3.65 3.41 
3.69 4. 1 3  

3.53 3.36 

2.38 3.54 

2 .34 3 .51  

2.71 
xi = 3 . 1 743 xo = 3 .6267 
51 = 0.463 1 So = 0.3584 

n1 = 1 4 no = 1 5  
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With 95% confidence, mean birth weight is between 0. 1 4  and 0 .77 kg lower for 
children born to heavy smokers than for those born to non-smokers. 

t test 

In small samples we allow for the sampling variation in the standard deviations 
by using the t distribution for our test of the nul l  hypothesis. This is called a t 

test, sometimes also known as an unpaired t test, to d istinguish it from the paired 

t test for paired measurements, described in Section 7 .6 .  The t value is  calculated 
as: 

.x , - xo 
t = --

s.e . 
.x, - xo 

d . f. = n 1  + no - 2 sJ( l /n 1  + l /no) '  

where, as before 

s = f [Cn 1  - l )sT + (no - l )s6] V (n 1  + no - 2)  

The corresponding P-value is derived in exactly the same way as  for the z 
distribution. This is best done using a computer, rather than tables, as it is  
impractical to have sets of tables for all the different possible degrees of freedom. 
However, an approximate P-value corresponding to different values of the test 
statistic t may be derived from Table A4 (see Appendix), which tabulates this for 
a selection of degrees of freedom. I t  can be seen that unless the number of degrees 
of freedom is small the P-value based on the normal distribution ( right hand 
column) does not differ greatly from that based on the t distribution (main part of 
table). 

Example 7.2 (continued) 
The calculations for the t-test to compare the birth weights of children born to 1 4  
heavy smokers with those of children born to 1 5  non-smokers, as shown in Table 
7 .2, are as follows: 

t = 
(3 . 1 743 - 3 .6267) 

= - 0.4524 
= -2.95 

0 .4 1 2 1 J( l / 1 4  + 1 / 1 5) 0 . 1 53 1  ' 

d . f. = 1 4  + 1 5  - 2 = 27, p = 0.0064 
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As the test is two-sided, the P-va lue corresponding to minus 2 .95 is the same as 
that corresponding to plus 2.95. Table A4 shows that the P-value corresponding to 
t = 3 .0  with 25 degrees of freedom is 0.006. The precise P-value of 0.0064 was 
derived using a computer. As explained in more detail in Chapter 8, a P-value of 
0.0064 provides fairly strong evidence against the null hypothesis. These data 
therefore suggest that smoking during pregnancy reduces the bi rthweight of the 
baby. 

7 . 5  S M A L L  S A M P L E S ,  U N E Q U A L  S TA N D A R D  D E V I AT I O N S  

When the population standard deviations o f  the two groups are different ,  and the 
sample size is not large, the main possibil it ies are: 
1 seek a suitable change of scale (a transformation, see Chapter 1 3) which 

makes the standard deviations similar so that methods based on the t distribu
tion can be used . For example, if the standard deviations seem to be propor
tional in size to the means, then taking logari thms or the individual values may 
be appropriate; 

2 use non-parametric methods based on ranks (see Section 30.2) ;  
3 use either the Fisher-Behrens or the Welch tests, which al low for unequal 

standard deviations (consult Armitage & Berry 2002); 
4 estimate the difference between the means using the original measure

ments, but use bootstrap methods to derive confidence intervals ( see Section 
30 .3 ) .  

7 . 6  P A I R E D  M E A S U R E M E N T S  

In  some circumstances our data consist o r  pairs o f  measurements, a s  described in 
the introduction to the chapter. These pairs may be two outcomes measured 
on the same individual under different exposure (or treatment)  circumstances. 
Alternatively, the pairs may be two individuals matched during sample selection 
to share certain key characteristics such as age and sex, for example in  a matched 
case-control study or in a cl inical trial with matched controls ( see Chapter 2 1 ) . 
Our analysis needs to take this pairing in the data into account :  this is done 
by considering the differences between each pair of outcome observations. In 
other words we turn our data of pairs of outcomes into a single sample of 
differences. 

Confidence i nterval 

The confidence interval for the mean of these differences is  calculated using the 
methods explained for a single mean in Chapter 6, and depending on the sample 
size uses ei ther the normal or the I distribution . In brief, the confidence interva l for 
the difference between the means is: 
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or 

Large samples ( 60 or more pairs) 
CI  = x - (:' x s .e . )  to x + (z' x s .e . )  

Small samples ( less than 60 pairs) 
C I  = x - ( t' x s .e . )  to x + ( t' x s . e . )  

where for large samples z' is the chosen percentage point of the  normal distribu
t ion and for small samples t' is the chosen percentage point of the t distribution 
with n - 1 degrees of freedom. ( See Table 6. 1 for more detai l s . )  

Example 7.3 
Consider the results of a cl inical trial to test the effectiveness of a sleeping drug in 
which the sleep of ten patients was observed during one n ight with the drug and 
one night with a placebo. The results obtained are shown in Table 7 . 3 .  For each 
patient a pair of sleep times, namely those with the drug and with the placebo, was 
recorded and the difference between these calculated. The average number of 
addit ional hours slept with the drug compared with the placebo was x = 1 .08, 
and the standard deviation of the differences was s = 2 . 3 1  hours. The standard 
error of the differences is s/vn = 2.3 1 /v l O  = 0.73 hours. 

Tabl e  7 .3 Results of  a placebo-controlled clinical trial to test the 

effectiveness of a sleeping drug. 

Hours of sleep 

Patient Drug Placebo Difference 

6.1 5.2 0.9 
2 6.0 7.9 - 1 .9 
3 8.2 3.9 4.3 
4 7.6 4.7 2 .9 
5 6.5 5.3 1 .2 
6 5.4 7.4 -2.0 
7 6.9 4.2 2.7 
8 6.7 6.1 0.6 
9 7.4 3.8 3.6 
1 0  5.8 7.3 - 1 .5 

Mean .ii1 = 6.66 .iio = 5 . 58 .ii = 1 .08 
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Since we have only ten pairs we use the t distribution with 9 degrees of freedom. 
The 5% point is  2 .26, and so the 95% confidence interval is :  

95% CI  = 1 .08 - (2 .26 x 0. 73)  to 1 .08 + (2 .26 x 0. 73) = -0.57 to 2 .  73 hours. 

With 95% confidence, we therefore estimate the drug to increase average sleeping 
times by between -0.5 1 and 2.  73 hours. This small study is thus consistent with an 
effect of the drug which ranges from a small reduction in mean sleep time to a 
substantial increase in mean sleep time. 

Note that the mean of the differences (_"\:) i s  the same as the difference between 
the means (x1 - x0 ) .  However, the standard error of x will be smaller than the 
standard error of (x 1  - x0) because we have cancelled out the variation between 
individuals in their underlying sleep times by calculating 1 1 1ithin-person differences. 
In other words, we have accounted for the between-person variation (see Section 
3 1 .4), and so our confidence interval is narrower than if  we had used an unpaired 
design of a similar size. 

Hypothesis test 

Hypothesis testing of paired means is carried out us111g either a paired 
: test or paired t test, depending on the same criteria as laid out for 
confidence intervals. We calculate the mean of the paired differences, and the 
test statistic is :  

Large sample 

or 
s .e .  sf .Jn 

Small sample 

x x t = � = s/.jn ' d . f. = n - 1 

where x is the mean of the paired differences, and n is the number of pairs. 

Example 7. 3 (continued) 
In the above example in Table 7 .3  the mean difference in sleep time is 1 .08 hours 
and the standard error is  0.73 hours. A paired t test gives : 

l = 1 .08/0.73 = 1 .48, d . f. = 9 

The probabil i ty of getting a t  value as large as this in a t  distribution with 9 degrees 
of freedom is 0 . 1 7, so there is no evidence against the null hypothesis that the 
drug does not affect sleep time. This is consistent with the interpretation of 
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the 95% CI given earl ier. An approximate P-value can be found from Table A4 
(see Appendix), which shows that if the test statistic is I .5 with 9 degrees of 
freedom then the P-value is 0.  I 68. Further examples of the use of confidence 
intervals and P-values to interpret the results of statistical analyses are given in the 
next chapter. 



C H A PTER 8 

Using P-values and confidence 

intervals to interpret the results of 
statistical analyses 

8 . 1  Introduction 

8.2 Testing hypotheses 

8.3 General form of confidence 

intervals and test statistics 

8 . 1  I N T R O D U CT I O N  

8.4 Interpretation of P-values 

8.5 Using P-values and confidence 

intervals to interpret the results 

of a statistical analysis 

In Chapter 7 we described how statistical methods may be used to examine the 
difference between the mean outcome in two exposure groups We saw that we 
present the results of analyses in two related ways, by reporting a confidence 
interval which gives a range of l ikely values for the difference in the population, 
and a P-value which addresses whether the observed difference in the sample could 
arise because of chance alone, i f  there were no difference in the population. 

Throughout this book, we will repeat this process. That is, we wil l :  
1 estimate the magnitude of the di fference in disease outcome between exposure 

groups; 
2 derive a confidence interval for the difference; and 
3 derive a P-value to test the nul l  hypothesis that there is no association between 

exposure and disease in the population. 
In  this chapter, we consider how to use P-values and confidence intervals to 
interpret the results of statistical analyses . We discuss hypothesis tests in more 
detai l ,  explain how to interpret P-values and describe some common errors i n  their 
interpretation. We conclude by giving examples of the interpretation of the results 
of different studies. 

8 . 2  T E S T I N G  H Y P O T H E S E S  

Suppose we believe that everybody who lives to age 90 or more is a non-smoker. 
We could investigate this hypothesis in two ways: 
1 Prove the hypothesis by finding every single person aged 90 or over and checking 

that they are all non-smokers. 
2 Dispro11e the hypothesis by finding just one person aged 90 or over who is a 

smoker. 
In  general ,  it is much easier to find evidence against a hypothesis than to be able to 
prove that i t  is  correct. In fact, one view of science (put forward by the philosopher 
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Karl Popper) is that it is a process of disproving hypotheses. For example, New
ton's laws of mechanics were accepted until Einstein showed that there were 
circumstances in which they did not work . 

Statistical methods formal ize this idea by looking for evidence against a very 
specific form of hypothesis, called a null hypothesis: that there is no d!fference 
between groups or no association between variables. Relevan t  data are then col
lected and assessed for their consistency with the null hypothesis . Links between 
exposures and outcomes, or between treatments and outcomes, are assessed by 
examining the strength of the evidence against the nul l  hypothesis, as measured by a 
P-value ( see Section 8 . 3 ) .  

Examples of  nu l l  hypotheses might be: 
• Treatment with beta-interferon has no effect on mean quality of l ife in patients 

with mul tiple sclerosis .  
• Performing radical surgery on men aged 55 to 75 diagnosed with prostate 

cancer does not improve their subsequent mortality. 
• Living close to power l ines does not affect a child's risk of developing leuk-

aemia. 
In  some circumstances, statistical methods are not required in order to reject the 
null hypothesis .  For example, before 1 990 the most common treatment for stomach 
ulcers was surgery. A pathologist noticed a particular organism ( now known as 
Helicobacterpylori) was often present in biopsy samples taken from stomach ulcers, 
and grew the organism in culture. He then swallowed a glassful ,  fol lowing which he 
experienced acute gastritis, and found that the organism progressed to a chronic 
infection. No statistical analysis of this experiment was necessary to confidently 
deduce this causal l ink and reject the null hypothesis of no association (B . J .  Marshall 
et al. 1 985 ,  Med J Australia 1 42; 436-9), although this was confirmed through 
antibiotic trials showing that eradicating H. pylori cured stomach ulcers. 

Similarly, when penici l l in was first used as a treatment for pneumonia in the 
l 940s the results were so dramatic that no formal trial was necessary. Unfortu
nately such examples, where the results 'hit you straight between the eyes' , are rare 
in medical research. Thjs is because there is rarely such a one-to-one l ink between 
exposures and outcomes; there is usually much more inherent variability from 
person to person. Thus although we know that smoking causes lung cancer, we are 
aware that some heavy smokers will l ive to an old age, and also that some non
smokers will die prematurely. In  other words, smoking increases the risk, but it 
does not by i tself determine death; the outcome is unpredictable and is influenced 
by many other factors. 

Statistical methods are used to assess the strength of evidence against a nul l  
hypothesis, taking into account this person-to-person variability. Suppose that we 
want to evaluate whether a new drug reduces cholesterol levels . We might study a 
group of patients treated with the new drug ( the treatment group) and a compar
able group treated with a placebo ( the control group), and d iscover that cholesterol 
levels were on average 5 mg per decil itre lower among patients in the treatment 
group compared to those in the control group. Before concluding that the drug is 



8.3 General form of confidence intervals and test statistics 73 

effective, we would need to consider whether this could be a chance finding. We 
address this question by calculating a test statistic and its corresponding P-value 
(also known as a significance level) . This is the probabil ity of getting a difference of 
at least 5 mg between the mean cholesterol levels of patients in the treatment and 
contro l  groups if the drug  really has no effect .  The smaller the ?-value, the 
stronger the evidence against the nul l  hypothesis that the drug has no effect on 
cholesterol levels . 

8 . 3  G E N E R A L  F O R M  OF C O N F I D E N C E  I N T E R V A L S  A N D  T E S T  
S TA T I S T I C S  

Note that i n  al l cases the confidence interval i s  constructed as the sample estimate 
(be it a mean, a difference between means or any of the other measures of exposure 
effect introduced later in the book) ,  plus or minus its standard error mult ipl ied by 
the appropriate percentage point. Unless the sample size is small, this percentage 
point is based on the normal distribution (e.g. 1 . 96 for 95% confidence intervals ) .  
The test statistic is simply the  sample estimate divided by i t s  standard error. 

95% C I = estimate - ( 1 .96 x s .e . )  to estimate + ( 1 .96 x s .e . )  

. . estimate 
Test stat1st1c = --

s .e .  

The standard error is inversely related to the sample size. Thus the larger the 
sample size, the smaller will be the standard error. Since the standard error 
determines the width of the confidence interval and the size of the test statistic, 
this also implies the following: for any particular size of difference between the two 
groups, the larger the sample size, the smaller will be the confidence interval and 
the larger the test statistic. 

The test statistic measures by how many standard errors the estimate differs 
from the nul l  value of zero . As i l lustrated in Figure 7 . 1 ,  the test statistic is used to 
derive a P-value, which is defined as the probability of getting a difference at least 
as big as that observed if the null hypothesis is true. By convention, we usually use 
two-sided P-values; we include the possibi l i ty that the difference could have been of 
the same size but in  the opposite direction. Figure 8 . 1 gives some examples of 
how the P-val ue decreases as the test statistic z gets further away from zero . The 
larger the test statistic, the smaller is the P-va lue. This can also be seen by 
examining the one-sided P-va lues ( the areas in the upper tail of the standard 
normal distribut ion) ,  which are tabulated for different values of :: in Table A l  in 
the Appendix .  

Note that we wil l  meet other ways of deriving test statistics later in the book. 
For example, we introduce chi-squared tests for association in contingency tables 
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P =  0.48 

p = 0. 1 9  

I 
: P =  0.62 

p = 0.02 

-3 -2 -1 0 1 

p = 0.006 

2 3 
z value (number of standard errors away from the nu l l  value of 0) 

F ig .  8 . 1  Different P-values corresponding to  the distance from the nu l l  value to  the sample mean (expressed 

as standard errors) .  Adapted from original by Dr K. Tilling, with thanks. 

in Chapter 1 7, and l ikelihood ratio tests for testing hypotheses in regression 
models in  Chapters 28 and 29. The interpretation of P-values is the same, no 
matter how they are derived. 

8 . 4  I N T E R P R E TAT I O N  OF P- VA L U E S  

The smaller the P-value, the lower the chance o f  getting a difference a s  big as 
the one observed if  the null hypothesis were true. In  other words, the smaller 
the P-value, the stronger the evidence against the null hypothesis, as i l lustrated in  
Figure 8 .2 .  If the P-value is large (more than 0. 1 ,  say) then the data do not  provide 
evidence against the null hypothesis, since there is  a reasonable chance that the 
observed difference could simply be the result of sampling variat ion. If the P-value 
is small ( less than 0 .00 1 ,  say) then a difference as big as that observed would be 
very unl ikely to occur if the null hypothesis were true; there is therefore strong 
evidence against the null hypothesis. 

It has been common practice to interpret a P-value by examining whether i t  is 
smaller than particular threshold values. In particular P-values less than 0.05 are 
often reported as 'statistically significant' and interpreted as being small enough to 
justify rejection of the null hypothesis. This is why hypothesis tests have often been 
called significance tests. The 0.05 threshold is an arbitrary one that became 
commonly used in medical and psychological research, largely because P-values 
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Fig. 8.2 I nterpretation of ?-values. 
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Weak evidence against 
the nu l l  hypothesis 

were determined by comparing the test statistic against tabulations of specific 
percentage points of d istributions such as the ::: and l distributions, as for example 
in  Table A3 (see Appendix) .  These days most statist ical computer packages 
will report the precise P-value rather than simply whether it is less than 0.05, 
0 .0 I ,  etc. In  reporting the results of a study, we recommend this precise P-value 
should be reported together with the 95% confidence interval ,  and the results 
of the analyses should be interpreted in the l ight of both. This is i l lustrated in 
Section 8 .5 .  

I t  should be acknowledged that the 95% confidence level is based on the  same 
arbitrary value as the 0 .05 threshold: a ::: value of 1 .96 corresponds to a ?-value of 
0.05 .  This means that i f  P < 0.05 then the 95% confidence interval will not contain 
the nul l  value. However, in terpretation of a confidence interval should not focus 
on whether or not i t  contains the nul l  value, but on the range and potential 
importance of the different values in the interval. 

It is  also important to appreciate that the size of the ?-value depends on the size 
of the sample, as d iscussed in more detail in Section 8 . 5 .  Three common and 
serious mistakes in the interpretation of ?-val ues are: 
1 Potentially medical ly important differences observed in small studies, for which 

the ?-val ue is more than 0.05, are denoted as non-significant and ignored. To 
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protect ourselves against this error, we should always consider the range of possible 
values for the difference shown by the confidence interval, as well as the P-value. 

2 All statistically significant (P  < 0.05) findings are assumed to result from real 
treatment effects, whereas by definit ion an average of one in 20 comparisons i n  
which the null hypothesis i s  true will result in P < 0.05.  

3 All statistically significant (P < 0.05) findings are assumed to be of medical 
importance whereas, given a sufficiently large sample size, even an extremely 
small difference in the population will be detected as different from the null  
hypothesis value of zero. 

These issues are discussed in the context of examples in the following section and 
in the context of sample size and power in Chapter 35. 

8 . 5  U S I N G  P- V A L U E S  A N D  C O N F I D E N C E  I N T E R V A L S  TO I N T E R P R E T  
T H E R E S U LT S  O F  A S T AT I S T I C A L  A N ALYS I S  

We have now described two different ways o f  making inferences about differences 
in mean outcomes between two exposure (or treatment) groups in the target 
population from the sample results. 
1 A confidence interval gives us the range of values within which we are reason

ably confident that the population difference lies. 
2 The P-value tells us the strength of the evidence against the null hypothesis that 

the true difference in  the population is  zero. 
Since both confidence intervals and P-values are derived from the size of the 
difference and its standard error, they are of course closely related . For example, 
if the 95% confidence interval does not contain the nul l  value, then we know the P
value must be smaller than 0.05. And vice versa; if the 95% confidence interval does 
include the nul l  value, then the P-value will be greater than 0.05.  Similarly if the 
99% confidence interval does not contain the null value, then the P-va lue is less 
than 0 .0 1 .  Because the standard error decreases with increasing sample size, 
the width of the confidence interval and the size of the P-value are as dependent 
on the sample size as on the underlying population difference. For a particular 
size of difference in  the population, the larger the sample size the narroiver will 
be the confidence in terval, the larger the test statistic and the smaller the P-value. 

Both confidence intervals and P-values are helpful in interpreting the results of 
medical research, as shown in Figure 8.3. 

Example 8. 1 
Table 8 . 1 shows the results of five controlled trials of three different drugs to lower 
cholesterol levels in middle-aged men and women considered to be at high risk of 
a heart attack. In each trial pat ients were randomly assigned to receive either the 
drug (drug group) or an identical placebo (control group). The number of patients 
was the same in the treatment and control groups. Drugs A and B are relatively 
cheap, while drug C is an expensive treatment. In each case cholesterol levels 
were measured after l year, and the mean cholesterol in the control group was 
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Population 

Sample 

95°/o Cl  
P value 

Fig. 8.3 Statistical methods to make inferences about the population from the sample. 

Table 8 . 1  Results of five trials of  drugs to lower serum cholesterol. 

Mean cholesterol Mean cholesterol 

No. of patients (mg/decil itre) in (mg/decil itre) in Reduction 

Trial Drug Cost per group drug group control group (mg/decilitre) 

A Cheap 30 1 40 1 80 40 
2 A Cheap 3000 1 40 1 80 40 
3 B Cheap 40 1 60 1 80 20 
4 B Cheap 4000 1 78 1 80 2 
5 c Expensive 5000 1 75 1 80 5 

1 80 mg/deci l itre. The effect of treatment, measured by the difference in the mean 
cholesterol levels in  the drug and control groups, varied markedly between the 
trials. We will assume that a mean reduction of 40 mg/decil i tre confers substantial 
protection against subsequent heart disease, while a reduction of 20 mg/decilitre 
confers moderate protection. 

What can we infer from these five trials about the effects of the drugs in  the 
population? Table 8.2 shows the effects (measured by the difference in  mean 

Table 8.2 Results of five trials of drugs to lower serum cholesterol, presented as mean difference (drug group 

minus control group), s.e. of the difference, 95% confidence interval and P-value. 

No. of Difference in 

patients mean cholesterol s.e. of 95% Cl for 

Trial Drug Cost per group (mg/decil itre) difference difference P-value 

1 A Cheap 30 -40 40 - 1 1 8.4 to 38.4 0.32 
2 A Cheap 3000 -40 4 -47.8 to -32.2 < 0.001 
3 B Cheap 40 -20 33 -84. 7 to 44. 7 0.54 
4 B Cheap 4000 -2 3.3 -8.5 to 4.5 0.54 
5 c Expensive 5000 -5 2 -8.9 to - 1 . 1 0 .0 1 2  
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cholesterol between the drug and control groups), together with the standard erro r  
of the difference, the 95% confidence interval and the P-value. 

Note that i t  is sufficient to display P-values accurate to two significant figures 
(e .g .  0 .32 or 0 .0 1 2) .  I t  is common practice to display P-values less than I in 1 000 as 
'P < 0.00 1 '  (although other lower l imits such as < 0.000 1 would be equally ac
ceptable) .  
• In trial I (drug A), mean cholesterol was reduced by 40 mg/decil it re .  However, 

there were only 30 patients in each group. The 95% confidence interval shows 
us that the results of the trial are consistent with a difference ranging from an 
increase of 38 .4 mg/decilitre (corresponding to an adverse effect of the drug) to 
a very large decrease of 1 1 8 .4 mg/decilitre. The P-value shows that there is no 
evidence against the nu l l  hypothesis of no effect of d rug A.  

• In  trial 2 (also drug A), mean cholesterol was also reduced by 40 mg/decil i tre. 
This trial was much larger, and the P-value shows that there was strong 
evidence against the nul l  hypothesis of no treatment effect .  The 95% confidence 
interval suggests that the effect of drug A in the population is a reduction i n  
mean cholesterol o f  between 32.2 and 47.8 mg/decil itre. Given that dru g  A i s  
cheap, this trial strongly suggests that it should be  used routinely. 

Note that the estimated effect of drug A was the same (a mean reduction of 
40 mg/decil i tre )  in  trials 1 and 2 .  However because trial 1 was small it 
provided no evidence against the null hypothesis of no treatment effect .  
This i l lustrates an extremely important point: in  small studies a large 
P-value does not mean that the null hypothesis is true. This is  summed up in 
the phrase 'Absence of evidence is not evidence of absence' .  

Because large stud ies have a better chance of detecting a given treatment 
effect than small studies, we say that they are more powe1:ful. The concept of 
power is  discussed in more detail in  Chapter 35 ,  on choice of sample size. 

• In trial 3 (drug B), the reduction in mean cholesterol was 20 mg/decil itre, but 
because the trial was small the 95% confidence interval is  wide (from a reduction of 
84. 7 mg/deci l itre to an increase of 44. 7  mg/decil i tre) .  The P-value is 0 .54: there i s  
no evidence against the nu l l  hypothesis that drug B has no effect on cholesterol 
levels . 

• In  trial 4 (also drug B), mean cholesterol was reduced by only 2 mg/decil itre. 
Because the trial was large the 95% confidence interval is narrow (from a reduc
tion of 8 . 5  mg/deci l i tre to an increase of 4.5 mg/decil itre ) .  This trial therefore 
excludes any important effect of drug B. The P-value is 0 .54: there is no evidence 
against the nul l  hypothesis that drug B has no effect on cholesterol levels . 

Note that there was no effect of drug B in  either trial 3 or trial 4, and the 
P-val ues for the two trials were the same. However, examining the confidence 
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i ntervals reveals that they provide very different information about the effect 
of drug B .  Trial 3 ( the small trial) is consistent with either a substantial 
benefit or a substantial harmful effect of drug B while trial 4 (the large trial) 
excludes any substantial effect of drug B (because the lower limit of  the 
confidence i nterval corresponds to a reduction of only 8.5 mg per decil itre). 

• Finally, trial 5 (drug C), was a very large trial in which there was a 5 mg/deci l i tre 
reduction in mean cholesterol in the drug group, compared to the control 
group. The P-value shows that there was evidence against the null hypothesis 
of no effect of drug C. However, the 95% confidence interval suggests that the 
reduction in  mean cholestero l  in the population is at most 8.9 mg/decil i tre, and 
may be as l i tt le as 1 . 1  mg/decil itre .  Even though we are fairly sure that d rug C 
would reduce cholesterol levels, it is very unl ikely that it would be used 
routinely since it is expensive and the reduction is not of the size required 
clin ical ly. 

Even when the P-value shows strong evidence against the nul l  hypothesis, it 
is  vital to examine the confidence interval to ascertain the range of values for 
the difference between the groups that is consistent with our data. The 
medical importance of the estimated effect should always be considered, 
even when there is  good statist ical evidence against the nul l  hypothesis. 

For further discussion of these issues see Sterne and Davey Smith (200 I ) , and 
Chapter 35 on choice of appropriate sample size. 
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Comparison of means from several 
groups: analysis of variance 

9 . 1  Introduction 

9.2 One-way analysis of variance 

Assumptions 

Relationship with the unpaired t test 

9.3 Two-way analysis of variance 

9 . 1  I N T R O D U C T I O N  

Balanced design with replication 

Balanced design without replication 

Unbalanced design 

9.4 Fixed and random effects 

When our exposure variable has more than two categories, we often wish to 
compare the mean outcomes from each of the groups defined by these categories. 
For example, we may wish to examine how haemoglobin measurements collected 
as part of a community survey vary with age and sex, and to see whether any sex 
difference is the same for all age groups. We can do this using analysis of variance. 

In general this wil l be done using a computer package, but we i nclude details of the 
calcu lat ions for the simplest case, that of one-way analysis of variance, as these are 
helpful in understanding the basis of the methods. Analysis of variance may be 
seen as a general ization of the methods introduced in Chapters 6 to 8, and is i n  
turn a special case of multiple regression, which i s  described in  Chapter 1 1 . 

We start with one-way analysis of variance, which is appropriate when the 
subgroups to be compared are defined by just one exposure, for example in  the 
comparison of means between different socioeconomic or ethnic groups. Two-way 
analysis of variance is also described and is appropriate when the subdivision is 
based on two factors such as age and sex. The methods can be extended to the 
comparison of subgroups cross-classified by more than two factors. 

An exposure variable may be chosen for inclusion in  an analysis of variance 
either in  order to examine its effect on the outcome, or because it represents a 
source of variation that it is important to take into account .  This is discussed in  
more detail in the context of multiple regression (Chapter 1 1 ) .  

This chapter may be  omitted a t  a first reading. 

9 . 2  O N E - WAY A N A L Y S I S  O F  V A R I A N C E  

One-way analysis o f  variance i s  used t o  compare the mean o f  a numerical outcome 
variable in the groups defined by an exposure level with two or more categories. 
I t  is  called one-way as the exposure groups are classified by just one variable. 
The method is based on assessing how much of the overall variation in 
the outcome is attributable to differences between the exposure group means: 
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hence the name analysis of variance. We will explain this m the context of a 
specific example. 

Example 9. 1 
Table 9. l (a )  shows the mean haemoglobin levels of patients according to type of 
sickle cell d isease. We start by considering the variance of all the observations, 
ignoring their subdivision into groups. Recall from Chapter 4 that the variance is 
the square of the standard deviation, and equals the sum of squared deviations of 
the observations about the overal l  mean d ivided by the degrees of freedom: 

? I:(x - .x-)2 
Variance, s- = ---

( 11 - I )  

One-way analysis of variance partitions this sum of squares (SS � I:(x - .x:)2 )  into 
two distinct components. 
1 The sum of squares due to differences between the group means. 
2 The sum of squares due to differences between the observations within each 

group. This is also called the residual sum of squares. 
The total degrees of freedom (n - 1 )  are similarly d ivided. The between-groups SS 
has (k - I )  d.f . ,  and the residual SS has (11 - k) d.f . ,  where k is the number of 
groups. The calculations for the sickle cel l  data are shown in Table 9. l (b )  and the 
results laid out in  an analysis of variance table in Table 9. l (c ) .  Note that the 
subscript i refers to the group number so that 11 1 ,  112 and 113 are the number of 
observations in  each of the three groups, x1 , .X:2 and .X-3 are their mean haemo
globin levels and s 1 , s2 , and s3 their standard deviations. Of the total sum of 
squares ( =  1 37 .85 ) ,  99.89 ( 72 .5%) is  attributable to between-group variation. 

The fourth column of the table gives the amount of variation per degree of 
freedom, and this is  called the mean square (MS). The test of the nul l  hypothesis 
that the mean outcome does not differ between exposure groups is based on a 
comparison of the between-groups and within-groups mean squares. I f  the observed 
differences in mean haemoglobin levels for the different types of sickle cell disease 
were simply due to chance, the variation between these group means would be 
about the same size as the variation between individuals with the same type, while 
if they were real differences the between-groups variation would be larger. The 
mean squares are compared using the F test, sometimes called the variance-ratio 

test. 

F = 
Between-groups MS d . f. = d.f .netween-groups, d .f.within-groups 
Within-groups MS ' = k _ 1 ,  n - k 

where n is the total number of observations and k is the number of groups. 
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Table 9 . 1  One-way analysis of variance: differences in steady-state haemoglobin levels between patients with 

different types of sickle cell disease. Data from Anionwu et al. (1 981 ) British Medical Journal 282: 283-6. 

(a) Data. 

Haemoglobin (gldecilitre) 

Type of sickle cell No. of 

disease patients (n;) Mean (!i;) s.d. (s;) Individual values (x) 

Hb SS 1 6  8.7 125  0.8445 7.2, 7.7, 8.0, 8 . 1 ,  8.3, 8.4, 8.4, 8.5, 8.6, 8.7, 
9 . 1 ,  9 . 1 ,  9 .1 , 9.8, 1 0. 1 ,  1 0.3 

Hb Slj3-thalassaemia 1 0  1 0.6300 1 .2841 8.1 , 9.2, 1 0.0, 1 0.4, 1 0.6, 1 0.9, 1 1 .1 ,  1 1 .9, 
1 2 .0, 1 2 . 1  

Hb SC 1 5  1 2 .3000 0.94 19  1 0.7, 1 1 .3, 1 1 .5, 1 1 .6, 1 1 .7, 1 1 .8, 1 2 .0, 1 2 . 1 ,  
1 2 .3, 1 2.6, 1 2 .6, 1 3.3, 1 3 .3, 1 3.8, 1 3 .9 

(b) Calculations. 

n = En; = 1 6  + 1 0  + 1 5  = 41 ,  no. of groups (k) = 3 
E x  = 7.2 + 7 .7  + . . . + 1 3 .8 + 1 3 .9 = 430.2 
E x2 = 7.22 + 7 .72 + . . .  + 1 3 .82 + 1 3 .92 = 4651 .80 

Total :  SS = E(x - x)2 = E x2 - ( E x)2 /n = 4651 .80- 430.22 /41 = 1 37.85 
d.f. = n - 1 = 40 

Between groups: SS = L.n;(!i; - x)2 ,  more easily calculated as En;xt - ( x)2 / n 

= 1 6  x 8.71 252 + 1 0 x 1 0.63002 + 1 5 x 1 2 .30002 - 430.22/41 = 99.89 

d.f. = k - 1  = 2 

Within groups: SS = E(n; - 1 )st 
= 1 5  x 0.84452 + 9  x 1 .2841 2 + 1 4 x 0.941 92 = 37 .96 

d.f. = n - k = 41 - 3 = 38 

(c) Analysis of variance. 

Source of variation SS d.f. MS = SS/d.f. 

Between groups 99.89 2 49.94 
Within groups 37.96 38 1 .00 
Total 1 37.85 40 

F = 
Between-groups MS 

Within-groups MS 

49.9, p < 0.001 

F should be about I if there are no real differences between the groups and 
larger than I if there are differences. Under the nul l  hypothesis that the between
group differences are simply due to chance, this rat io fol lows an F distribution 

which, in contrast to most distributions, is specified by a pair of degrees of 
freedom: (k - 1 )  degrees of freedom in the numerator and (n - k) in the denomin
ator. P-val ues for the corresponding test of the nul l  hypothesis ( that mean haemo
globin levels do not differ according to type of sickle-cell disease) are reported by 
statistical computer packages. 

In Table 9 . l (c) ,  F = 49.94/ 1 .00 = 49 .9 with degrees of freedom (2, 38 ) :  the 
corresponding P-value is < 0.00 1 .  There is thus strong evidence that mean steady-
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state haemoglobin levels d i ffer between patients with different types of sickle 
cell d isease, the mean being lowest for patients with Hb SS disease, intermediate 
for patients with Hb S/(3-thalassaemia,  and highest for patients with Hb SC disease. 

Assumptions 

There are two assumptions underlying the analysis of variance and corresponding 
F test. The first is that the outcome is normally d istributed. The second is that the 
population value for the standard deviation between individuals is the same in 
each exposure group. This is estimated by the square root of the within-groups 
mean square. Moderate departures from normality may be safely ignored, but  the 
effect of unequal standard deviations may be serious. In  the latter case, transform
ing the data may help (see Chapter 1 3 ) .  

Relationship with the unpaired t test 

When there are only two groups, the one-way analysis of variance gives exactly the 
same results as the t test. The F statistic (with 1 ,  n - 2 degrees of freedom) exactly 
equals the square of the corresponding I statistic (with n - 2 degrees of freedom), 
and the corresponding P-val ues are identical .  

9 . 3  TWO-WAY A N A L Y S I S  OF  V A R I A N C E  

Two-way analysis o f  variance i s  used when the data are classified i n  two ways, for 
example by age-group and sex. The data are said to have a balanced design i f  there 
are equal numbers of observations in  each group and an unbalanced design if 
there are not. Balanced designs are of two types, with replication i f  there i s  more 
than one observation in each group and without replication i f  there is only one. 
Balanced designs were of great importance before the widespread availability of 
statistical computer packages, because they can be analysed using simple and 
elegant mathematical formulae. They also allow a division of the sum of squares 
into different components. However, they are of less importance now that calcu
lations for analysis of variance are done using a computer. 

Balanced design with repl ication 

Example 9.2 
Table 9 .2  shows the results from an experiment in  which five male and five female 
rats of each of three strains were treated with growth hormone. The aims were to 
find out whether the strains responded to the treatment to the same extent ,  and 
whether there was any sex difference. The measure of response was weight gain 
after seven days. 

These data are classified in two ways, by strain and by sex. The design is 
balanced with repl ication because there are five observations in each strain-sex 
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Table 9.2 Differences in response to growth hormone for five male and five female rats from three d ifferent 

strains. 

(a) Mean weight gains in grams with standard deviations in parentheses (n = 5 for each group). 

Sex 

Male 

Female 

A 

1 1 .9 (0.9) 

1 2 .3 (1 . 1 )  

(b) Two-way analysis o f  variance: balanced design with replication. 

Source of variation 

Main effects 

Strain 

Sex 

Interaction 

Strain x sex 

Residual 

Total 

SS 

2.63 

1 . 1 6  

1 .65 

1 6.86 

22.30 

d.f. 

24 

29 

Strain 

B 

1 2 . 1  (0.7) 

1 1 .8 (0.6) 

MS 

1 .32 

1 . 1 6  

0.83 

0.70 

c 

1 2 .2 (0.7) 

1 3 . 1  (0.9) 

F = MS effect 

MS residual 

1 .9, P = 0. 1 7  

1 .7, P = 0.20 

1 .2, p = 0.32 

group. Two-way analysis of variance divides the total sum of squares into four 
components: 
1 The sum of squares due to differences between the strains. This is said to be the 

main effect of the factor, strain. I ts associated degrees of freedom are one less 
than the number of strains and equal 2 .  

2 The sum of squares due to differences between the sexes, that  is the main effect 
of sex. Its degrees of freedom equal 1 ,  one less than the number of sexes. 

3 The sum of squares due to the interaction between stra in  and sex. An interaction 
means that the strain differences are not the same for both sexes and, equiva
lently, that the sex difference is not the same for the three strains. The degrees of 
freedom equal the product of the degrees of freedom of the two main effects, 
which is  2 x 1 = 2 .  The use of regression models to examine interaction be
tween the effects of exposure variables is discussed in Section 29 .5 .  

4 The residual sum of squares due to differences between the rats within each 
strain-sex group. Its degrees of freedom equal 24, the product of the number of 
strains (3) ,  the number of sexes (2) and one less than the number of observations 
in each group (4) . 

The nul l  hypotheses of no main effect of the two exposures and of no interaction 
are examined by using the F test to compare their mean squares with the residual 
mean square, as described for one-way analysis of variance. No evidence of any 
association was obtained in this experiment .  



9.4 Fixed and random effects 85 

Balanced design without replication 

In a balanced design without replication there is no residual sum of squares in the 
analysis of variance, since there is only one observation in each cel l  of the table 
showing the cross-classification of the two exposures. In  such a case, it is assumed 
that there is  no interaction between the effects of the two exposures, and the 
in teraction mean square is  used as an estimate of the residual mean square for 
calculat ing F statist ics for the main effects. The two-way analysis of variance for a 
balanced design without replication is an extension of the paired t test, comparing 
the values of more than two variables measured on each individual .  The two 
approaches give the same results when just two variables are measured, and the 
F value equals the square of the t value. 

Unbalanced design 

When the numbers of observat ions in each cell are not equal the design is said to 
be unbalanced . The main consequence, apart from the additional complexity of the 
calculations, is  that i t  is not possible to disentangle the effects of the two exposures 
on the outcome. Instead, the additional sum of squares due to the effect of one 
variable, allowing for the effect of the other, may be calculated . These issues are 
explained in more detail in Chapter 1 1 , which describes multiple l inear regression. 

Unbalanced data are common, and unavoidable, in  survey investigations. The 
interpretation of clinical trials and laboratory experiments wil l  be simplified if they 
have a balanced design, but even when a balanced design is planned this will not 
always succeed as, for example, people may withdraw or move out of the area 
half-way through a trial, or animals may die during the course of an experiment. 

9 . 4  F I X E D  A N D  R A N D O M  E F F E C T S  

The effect of exposures can be  defined in  two ways, a s  fixed effects or a s  random 

effects. Factors such as sex, age-group and type of sickle cell disease are all fixed 
effects since their individual levels have specific values; sex is always male or 
female. In  contra st, the individual levels of a random effect are not of in trinsic 
interest but are a sample of levels representative of a source of variat ion .  For 
example, consider a study to investigate the variation in sodium and sucrose 
concentrations of home-prepared oral rehydration solutions, in which ten persons 
were each asked to prepare eight solutions. In this case, the ten persons are of 
interest only as representatives of the variation between solutions prepared by 
different persons. Persons i s  then a random effect. The method of analysis is the 
same for fixed and random effects in one-way designs and in two-way designs 
without replication, but not in two-way designs with replication (or in higher level 
designs ) .  In  the latter, if both effects are fixed, their mean squares are compared 
with the residual mean square as described above. If, on the other hand, both 
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effects are random, their mean squares are compared with the interaction rather 
than the residual mean square. If one effect is random and the other fixed, i t  is the 
other way round; the random effect mean square is compared with the residual 
mean square, and the fixed effect mean square with the interaction .  Analyses with 
random effects are described in more detail in Chapter 3 1 .  
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Previous chapters have concentrated on the assoc1at1on between a numerical 
outcome variable and a categorical exposure variable with two or more levels .  
We now turn to the relationship between a numerical outcome and a numerical 
exposure. The method of l inear regression is used to estimate the best-fi t ting 
straight l ine to describe the association. The method also provides an estimate 
of the correlation coefficient, which measures the closeness (strength)  of the l inear 
association . In this chapter we consider simple linear regression in which only one 
exposure variable is  considered . I n  the next chapter we introduce multiple regres
sion models for the effect of  more than one exposure on a numerical outcome. 

1 0 . 2  L I N E A R  R E G R E S S I O N  

Example 1 0. 1 
Table 1 0 . 1  shows the body weight and plasma volume of eight healthy men . A 
scatter plot of these data (Figure l 0 . 1 )  shows that high plasma volume tends to be 

Table 1 0 . 1  Plasma volume, and body weight in eight healthy men. 

Sample size n = 8, mean body weight x = 66.875, 

mean plasma volume ji = 3 .0025 .  

Subject Body weight (kg) Plasma volume (litres) 

1 58.0 2.75 
2 70.0 2.86 
3 74.0 3 .37 

4 63.5 2.76 
5 62.0 2.62 
6 70.5 3.49 
7 7 1 .0 3.05 
8 66.0 3 . 1 2  
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Fig. 1 0. 1  Scatter diagram of plasma volume and body weight showing the best-fitting l inear regression l ine. 

associated with high weight and vice versa. Note that i t  is  conventional to 
plot the exposure on the horizontal axis and the outcome on the vertical axis. 
In this example, i t  is  obviously the dependence of plasma volume on body weight 
that is of interest, so plasma volume is the outcome variable and body weight is the 
exposure variable. Linear regression gives the equation of the straight line that 
best describes how the outcome y increases (or decreases) with an increase in  the 
exposure variable x. The equation of the regression line is: 

where f3 is the Greek letter beta. We say that {30 and {3 1  are the parameters or 
regression coefficients of the l inear regression : {30 is the intercept ( the value of y 
when x = 0), and {31 the slope of the l ine ( the increase in y for every unit  increase in  
x; see Figure 1 0.2) .  

Estimation of the regression parameters 

The best-fitting l ine is derived using the method of least squares: by finding the 
values for the parameters {30 and {31 that minimize the sum of the squared vertical 
distances of the points from the l ine ( Figure 1 0. 3 ) .  The parameters {30 and {31 are 
are estimated using the fol lowing formulae: 
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Fig. 1 0 .2 The intercept and slope of the regression equation, y = (30 + (31 x. The intercept, (30, is the point 

where the line crosses the y axis and gives the value of y for x = 0. The slope, (31 , is the increase i n  y 
corresponding to a un it increase in x. 
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Fig. 1 0.3 Linear regression l ine, y = (30 + (31x, fitted by least squares. (30 and (31 are calcu lated to 

minimize the sum of squares of the vertical deviations (shown by the dashed lines) of the points about 
the line; each deviation equals the difference between the observed value of y and the corresponding point 

on the l ine, (30 + (31 x .  
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/3 
_ L;(x - x)(y - y) 

I - "( -)2 LJ x - x  
and /Jo = Y - /3 1 .X 

Regression coefficients are sometimes known as 'beta-coefficients', and are 
labelled in this way by some statist ical software packages. When the slope 
/31 = 0 this corresponds to a horizontal l ine at a height of y and means that 
there is  no association between x and y. 

I n  this example: 

So: 

and: 

L;(x - x)(y - y) = 8 .96 and I;(x - x)2 = 205 .38 

/31 = 8.96/205 .38 = 0.0436 1 5  

/30 = 3 .0025 - 0.0436 1 5  x 66 .875 = 0 .0857 

Thus the best-fitting straight l ine describing the association of plasma volume with 
body weight is: 

Plasma volume = 0.0857 + 0.0436 x weight 

which is shown in Figures 1 0 . 1 and 1 0. 3 .  
The regression l i ne  is drawn by calculating the co-ordinates of  two points which 

l ie on it. For example: 

x = 60, y = 0.0857 + 0.0436 x 60 = 2 . 7  

and 

x = 70, y = 0.0857 + 0.0436 x 70 = 3 . 1  

As a check, the l ine should pass through the point (.x, y) = (66.9, 3 .0) .  Statistical 
software packages will usually allow the user to include the regression line i n  
scatter plots. 

The calculated values for /Jo and /31 are estimates of the population values of the 
intercept and slope and are, therefore, subject to sampling variat ion. As with 
estimated differences between exposure group means (see Chapter 7 )  their preci
sion is measured by their standard errors. 
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J [ 1 _x2 ] 
s .e . ({30) = s . 

:-
+ _ _ 2 n L;(x - x) 

s 
and s.e .({31 ) = / 2 y I;(x - x) 

s = / [I;(y - y)2 - fJTL;(x - x)2] V (n - 2) 

s is the standard deviation of the points about the line. It has (n - 2 )  degrees of 
freedom ( the sample size minus the number of regression coefficients) .  In  this 
example I;(y - y)2 = 0.6780 and so: 

and 

Computer output 

s = J0 .6780 - 0.0�362 x 205. 38 
= 0.2 1 89 

_ / [� 66.92 ] _ ? s.e . ({30 ) - 0 .2 1 89 V 8 + 205 . 38  - 1 .0_37 

0 .2 1 89 
s.e .({31 ) = 

J 
= 0.0 1 53 

205 .38  

Linear regression models are usually estimated using a statistical computer pack
age. Table 1 0 .2  shows typical output; for our example, plasvol and 111eight were the 
names of the outcome and exposure variables respectively in the computer file.  The 
output should be interpreted as follows. 
1 The regression coefficient for 1 veigh1 is the same as the estimate of {3 1 calculated 

earl ier while the regression coefficient labelled 'Constant ' corresponds to the 
estimate of the intercept ({30 ) .  

Note that in  this example the intercept i s  not a meaningful number: i t s  l i teral 
interpretation is as the estimated mean plasma volume when weight = 0. The 
intercept can be made meaningful by centring the exposure variable: subtracting 
its mean so that the new exposure variable has mean = 0. The intercept in a l inear 
regression with a centred exposure variable is equal to the mean outcome. 

2 The standard errors also agree with those calcu lated above. 
3 The t statistics in the fourth column are the values of each regression coefficient 

divided by its standard error. Each t statistic may be used to test the nul l  hypo
thesis that the corresponding regression coefficient is equal to zero. The degrees 
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Table 1 0.2 Computer output for the linear regression of plasma volume on body weight (data in Table 1 0. 1  ) . 

Plasvol 

Weight 

Constant 

Coefficient 

0.0436 

0.0857 

Std err 

0.01 53 

1 .024 

2.857 

0.084 

p > lt l 

0.029 

0.936 

95% Cl 

0.0063 to 0.081 0 

-2.420 to 2.591 

of freedom are the sample size minus the number of regression coefficients, 
n - 2.  The corresponding P-values are in  the fifth column. In  this example, the 
P-value for weight is 0 .029: there is some evidence against the nul l  hypothesis 
that there is  no association between body weight and plasma volume. The P
value for the intercept tests the nul l  hypothesis that the intercept is equal to 
zero : this is not usually an interesting null  hypothesis but is  reported because 
computer packages tend to present their output in a uniform manner. 

4 The 95% confidence intervals are calculated as: 

CI = regression coefficient - t' x s.e. to regression coefficient + t' x s .e .  

where 1 1  i s  the relevant percentage point of the t distribution with n - 2 degrees 
of freedom. I n  this example the 5% point of the t distribution with 6 d . f. is 2.45, 
and so (for example) the lower l imit of the 95% CI for (3 1  is 0 .0436 - 2 .45 x 
0.0 1 53 = 0.0063.  In large samples the 5% point of the normal d istribution ( 1 .96) 
is  used (d .f . = oo in Table A3, Appendix) .  

Assumptions 

There are two assumptions underlying l inear regression . The first is  that, for any 
value of x, y i s  normal ly d istributed. The second is that the magnitude of the 
scatter of the points about the l ine is  the same thro ughout  the length of the l ine. 
This scatter is measured by the standard deviation, s, of the points about the line 
as defined above. More formally, we assume that: 

where the error, e, is normally distributed with mean zero and standard deviation 
O', which is estimated by s (the standard deviation of the points about the line). The 
vertical deviations (shown by the dotted l ines) in Figure 1 0.3  are the estimated 
errors, known as residuals, for each pair of observations. 

A change of scale may be appropriate if either of the two assumptions does not 
hold, or i f  the relationship seems non-l inear ( see Sections 1 1 . 5 and 29.6) .  It is 
important to examine the scatter plot to check that the association is approximately 
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l inear before proceeding to fit a l inear regression. Ways to check the assumptions 
made in a l inear regression are discussed in more detail in Section 1 2. 3 .  

Prediction 

In some situations i t  may be useful to use the regression equation to predict the 
value of y for a particular value of x, say x' . The predicted value is :  

and its standard error is: 

, J [ l (x' - x)2 l 
s .e .(y ) = s 1 + - + 2 n E(x - x) 

This standard error i s  least when x' is close to the mean, .x. In  general , one should 
be reluctant to use the regression line for predicting values outside the range of x 
in the original data, as the l inear relationship will not necessarily hold true beyond 
the range over which it has been fitted . 

Example 1 0. 7 (continued) 
I n  this example, the measurement of plasma volume is time-consuming and so, in 
some circumstances, i t  may be convenient to predict it from the body weight .  For 
instance, the predicted plasma volume for a man weighing 66 kg is :  

0 .0832 + 0.0436 x 66 = 2.96 l i tres 

and its standard error equals: 

0 .2 1 89 / [ 1 � ( 66 - 66·9 )2] 
= 0.23 l i tres v + 8 

+ 
205 .38 

1 0 . 3  C O R R E LA T I O N  

A s  well as estimating the best-fitting straight line we may wish to examine the 
strength of the linear association between the outcome and exposure variables. 
This is measured by the correlation coefficient, r, which is estimated as: 

E(x - x)(y - y) 
r = ---------j [E(x - x)2E(y - y)2] 
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where x denotes the exposure, y denotes the outcome, and x and y are the 
corresponding means. Scatter plots i l lustrating different values of the correlation 
coefficient are shown in Figure 1 0.4. The correlation coefficient is always a 
number between - 1  and + 1 ,  and equals zero if the variables are not associated. 
It is positive i f  x and y tend to be high or low together, and the larger its value the 
closer the association. The maximum value of 1 is obtained if  the points in  the 
scatter plot l ie exactly on a straight line. Conversely, the correlation coefficient is 
negative if high values of y tend to go with low values of x, and vice versa . The 
correlation coefficient has the same sign as the regression coefficient {31 • When 
there is no correlation {31 equals zero, corresponding to a horizontal regression l ine 
at height y (no association between x and y). 

r = O  

. . . . . . . 
. . . . . . . . . 

: : : 
.

.
.

.
. 

. 

( a )  No correlat ion 

O < r< 1  

{b )  I m perfect positive 

corre l at ion 

- 1 < r <O 
. . . . . . . . . . . . . . . . . . . . . . . . 

. :· . 

{ d )  I m perfect negative 
correlat ion 

r = 1  

{c) Perfect posit ive 
correlat ion 

r =  - 1  

{e)  Perfect negative 
corre lat ion 

Fig. 1 0.4 Scatter plots i l lustrating different values of the correlation coefficient. Also shown are the 
regression l ines. 

Example 7 0. 7 (continued) 
I n  this example: 

J
' 

= 
8 ·96 

= 0.759 1 
J(205 .38 x 0.6780) 
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Table 1 0.3 Computer output for the linear regression of the derived variable std pl as vol on stdweight (plasma 

volume and body weight divided by their standard deviations). 

stdplasvol 

stdweight 

Constant 

Coefficient 

0.7591 

0.2755 

Std err 

0.2657 

3.2904 

2.86 

0.08 

p > t 

0.029 

0.936 

95% Cl 

0 . 1 089 to 1 .4094 

-7. 7759 to 8.3268 

A useful i nterpretation of the correlation coefficient is that it is  the number of 
standard deviations that the outcome y changes for a standard deviation change in 
the exposure x. In larger studies (sample size more than about l 00) ,  this provides a 
simple way to derive a confidence interval for the correlation coefficient ,  using 
standard l inear regression. In this example, the standard deviation of body weight 
was 5 .42 kg, and the standard deviation of plasma volume was 0 .3  l l i tres. I f  we 
divide each variable by its standard deviation we can create new variables, each of 
which has a standard deviation of I .  We will call these variables stdp/asvo/ and 
std1veight :  a change of I in these variables therefore corresponds to a change of one 
standard deviation in the original variables. Table I 0.3 shows computer output 
from the regression of stdp/asvo/ on std111eight. The regression coefficient for 
std111eight is precisely the same as the correlation coefficient calculated earlier. 
Note also that the P-val ues are identical to those in Table I 0.2 :  the nul l  hypothesis 
that the correlation r = 0 is identical to the null hypothesis that the regression 
coefficient /31 = 0. 

For large samples the confidence interval corresponding to the regression coef
ficient for t he modified exposure variable (std1veight in Table 1 0 . 3 )  may be in ter
preted as a confidence interval for the correlation coefficient .  In this very small 
study, however, the upper limit of the 95% Cl  is 1 .4094, whereas the maximum 
possible value of the correlation is I .  For studies whose sample size is less than 
about 1 00, confidence intervals for the correlation coefficient can be derived using 
Fisher's transformation: 

1 ( 1  + r) 
:;;,. = 2 log

e 1 - r 

See Section 1 3 .2  for an explanation of logari thms and the exponential function. 
The standard error of the transformed correlation z,. is approximately I /  J(n - 3) ,  
and so a 95% confidence interval for z,. is :  

95% CI = z,. - 1 .96/ j(n - 3 )  to z,. + 1 .96/ j(n - 3 )  

This can then be t ransformed back t o  give a confidence interval for  r using the 
inverse of Fisher's transformation: 
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exp(2z,.) - 1 r = -----
exp(2z,.) + 1 

In  this example, the transformed correlation between weight and plasma volume i s  
z,. = 0. 5 loge ( l . 759 1 /0.2409) = 0.994 1 . The standard error of z,. i s  l /y'(8-3) = 
0.4472. The 95% C I  for z,. is :  

95% CI for z,. = 0.994 1 - 1 .96 x 0.4472 to 0 .994 1 + 1 .96 x 0.4472 

= 0. 1 1 76 to 1 . 8706 

Applying the inverse of Fisher's transformation to the upper and lower confidence 
l imits gives a 95% CI for the correlation: 

95% CI for r = 0. 1 1 7 1  to 0.9536 

1 0 . 4  A N A LY S I S  OF V A R I A N C E  A P P R O A C H  TO S I M P L E  L I N EA R  
R E G R E S S I O N  

We stated earlier that the regression coefficients {30 and {3 1  are calculated so as to 
minimize the sum of squared deviations of the points about the regression line. 
This can be compared to the overall variation in the outcome variable, measured 
by the total sum of squares 

SSTotal = L;(y - _Y)2 
This is i l lustrated in Figure 1 0 .5 where the deviations about the l ine are shown by 
the dashed vertical l ines and the deviations about the mean, (y - y), are shown 
by the solid vertical l ines. The sum of squared deviations about the best-fitting 
regression l ine is called the residual sum of squares (SSResiduaJ ) . This is  less than 
SSTotal by an amount which is called the sum of squares explained by the regression 
of plasma volume on body weight, or simply the regression sum of squares 

SSRegression = SSTotal - SSResidual 

This splitting of the overall variation into two parts can be laid out in an analysis 
of variance table (see Chapter 9). 

Example 1 0. 1  (continued) 
The analysis of variance results for the l inear regression of plasma volume on body 
weight are presented in Table 1 0.4. There is  I degree of freedom for the regression 
and n - 2 = 6 degrees of freedom for the residual . 

I f there were no association between the variables, then the regression mean square 
would be about the same size as the residual mean square, while if the variables 
were associated i t  would be larger. This is  tested using an F test, with degrees 
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Fig.  1 0.5 Deviations in the outcome y about the regression l ine (dashed vertical l i nes) and about the mean 

y (so l id vertical l ines). 

Table 1 0.4 Analysis of variance for the l inear regression of plasma volume on body weight (n = 8). 

Sum of squares Degrees of Mean square F =  MS regression 

Source of variation (SS) freedom (d. f.) (MS = SS/d.f.) MS residual 

Regression 0.3907 0.3907 8 . 1 6, p = 0.029 

Residual 0.2873 6 0.0479 

Total 0.6780 7 0.0969 

of freedom ( ! ,  n - 2) ,  as described in Chapter 9. The resulting P-value is identical 
to that from the t statistic in the l inear regression output presented in  Table 1 0.2 .  

1 0 . 5  R E LA T I O N S H I P  B E T W E E N  C O R R E LA T I O N  C O E F F I C I E N T  A N D  
A N A L Y S I S  O F  V A R I A N C E  T A B L E  

The analysis o f  variance table gives a n  alternative interpretation o f  the correlation 
coefficient. The square of the correlation coefficient, r2 , equals the regression sum 
of squares divided by the total sum of squares (0 .762 = 0.5763 = 0.3907 /0.6780) .  
I t  is  thus the proportion of the total variation in plasma volume that has been 
explained by the regression. In Example 1 0. 1 ,  we can say that body weight ac
counts for 57 .63% of the total variation in plasma volume. 
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Regression with exposure 

1 1 . 1 I N T R O D U C T I O N  

Situations frequently occur i n  which we wish t o  examine the dependency o f  a 
numerical outcome variable on several exposure variables, not just one. This is  
done using multiple linear regression, a generalization of the methods for l inear 
regression that were introduced in  Chapter 1 0. 

In general, there are two reasons for including extra exposure variables in a 
multiple regression analysis. The first is to estimate an exposure effect after 
al lowing for the effects of other variables . For example, if two exposure groups 
differed in respect to other factors, such as age, sex, socioeconomic status, which 
were known to affect the outcome of interest, then i t  would be important to adjust 
for these differences before attributing any difference in  outcome between the 
exposure groups to the exposure. This is described in  Section 1 1 .2  below, and is 
an example of the control of confounding factors, explained in  more detail in 
Chapter 1 8 . The second reason is that inclusion of exposure variables that are 
strongly associated with the outcome variable will reduce the residual variation and 
hence decrease the standard error of the regression coefficients for other exposure 
variables. This means that i t  will increase both the accuracy of the estimation of the 
other regression coefficients, and the l ikel ihood that the related hypothesis tests 
will detect any real effects that exist. This latter attribute is called the power of the 
test and is described in  detail in Chapter 35 ( 'Calculation of required sample size' ) .  
This second reason applies only when the outcome variable is numerical (and not, 
for example, when we use logistic regression to analyse the association of one or 
more exposure variables with a binary outcome variable, see Chapters 1 9  and 20). 

Multiple regression can be carried out with any number of variables, although i t  
is recommended that the number be kept reasonably small, as with larger numbers 
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the interpretation becomes increasingly more complex. These issues are d iscussed 
in more detail in the chapters on regression modelling (Chapter 29) and strategies 
for analysis (Chapter 38 ) .  

1 1 . 2 M U L T I P L E  R E G R E S S I O N  W I T H  TWO E X P O S U R E  VA R I A B L E S  

Example 1 1 . 1 
All  the methods wil l be i l lustrated using a study of lung function among 636 
children aged 7 to 1 0  years l iving in  a deprived suburb of Lima, Peru . The 
maximum vol ume of air that the children could breathe out in I second ( Forced 
Expiratory Volume in I second, denoted as FEV 1 )  was measured using a spi rom
eter. The age and height of the children were recorded, and their carers were asked 
about respiratory symptoms that the children had experienced in the l ast year. 

Consider first the relationship of lung function (FEY1 ) with the two exposure 
variables: age and height of the child. I t  seems l ikely that FEY 1 wi l l  i ncrease with 
both height and age, and this is confirmed by scatter plots, which suggest that the 
relationship of FEY 1 with each of these is l inear (Figure 1 1 . 1  ) .  The output from 
separate l inear regression models for the association between FEY 1 and each of 
these two exposure variables is shown in Table 1 1 . 1 .  

As i s  apparent from the scatter plots, there is a strong association between FEY 1 
and both age and height .  The regression coefficients tell us that FEY 1 i ncreases by 
0 .2 1 85 l itres for every year of age, and by 0.03 1 1 l i tres for every centimetre of height .  
The regression l ines are shown on the scatter plots in  F igure 1 1 . l .  The correlations 
of FEV1 with age and height are 0 .5 1 6 1 and 0.6376, respectively. 

As might be expected, there is also a strong association between age and height 
(correlation = 0.5946) .  We may therefore ask the following questions: 
• what is the association between age and FEY 1 ,  having taken the association 

between height and FEY 1 into account? 
• what is the association between height and FEY 1 ,  having taken the association 

between age and FEY 1 into account? 

Table 1 1 . 1  Computer output for two separate l inear regression models for FEV1 . 

(a) FEV1 and age. 

FEV1 Coefficient Std err p > l tl 95% Cl 

Age 0.2 1 85 0.01 44 1 5 . 1 74 0.000 0 . 1 902 to 0.2467 
Constant -0.3679 0.1 298 -2 .835 0.005 -0.6227 to -0. 1 1 3 1 

(b) FEV1 and height. 

FEV1 Coefficient Std err p > l t l 95% Cl 

Height 0.031 1 0.00 149 20.840 0.000 0.0282 to 0.0341 
Constant -2.2658 0.1 855 -1 2 .2 1 6  0.000 -2.6300 to - 1 .901 6 
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Often, we ta lk  of the effect of a variable having adjusted or controlled for the 
effects of  the other variable(s) in the model .  

These questions may be answered by fitt ing a multiple regression model for the 
effects of height and age on FEY 1 .  The general form of a multiple regression 
model for t he effects of two exposure variables (x1 and x2 ) on an outcome variable 
(y) is : 

The intercept (30 is the value of the outcome y when both exposure variables x1  and 
x2 are zero . In this example: 

FEY 1 = (30 + (31 x age + (32 x height 

This model assumes that for any age, FEY 1 is l inearly related to height ,  
and correspondingly that  for any height ,  FEY 1 is l inearly related to age. Note that 
(31 and (32 wil l  be different to the regression coefficients from the simple l inear 
regressions on age and height separately, unless the two exposure variables are 
unrelated . 

The way i n  which the regression coefficients are estimated is the same as for 
linear regression with a single exposure variable: the values of (30, (31 and (32 are 
chosen to minimize the sum of squares of the differences [y - ((30 + (31 xi + f32x2)] 
or, in other words, the variation about the regression. In this example each 
observed FEY 1 i s  compared with ((30 + (31 x age + (32 x height) .  The estimated 
regression coefficients are shown in Table 1 1 .2 . 

The regression output tells us that the best-fitt ing model is :  

FEY 1 = -2.3087 + 0 .0897 x age + 0.0250 x height 

After controll ing for the association between FEY 1 and height ,  the regression 
coefficient for age is much reduced (from 0.2 1 85 l i t res/year to 0.0897 l i tres/year) .  
There is a smaller reduction in the regression coefficient for height: from 
0.03 1 1 l i tres/cm to 0 .0250 l i tres/cm. The t statistics and corresponding P-values for 
age and height test the nul l  hypotheses that, respectively, there is no association of 

Table 1 1 .2 Computer output showing the estimated regression coefficients from the multiple regression relating 

FEV1 to age and height. 

Age 

Height 

Constant 

Coefficient 

0.0897 

0.0250 

-2.3087 

Std err 

0.01 57 

0.001 8 

0.1 81 2 

5.708 

1 3 .77 

-12 .743 

p > i t l 

0.000 

0.000 

0.000 

95% Cl 

0.0588 to 0 . 1 206 

0.02 1 4  to 0.0285 

-2.6645 to - 1 .9529 
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FEY 1 with age having controlled for its association with height, and no associ
ation of FEY 1 with height having controlled for its association with age. 

Note that the P-values in this analysis are not rea lly zero; they are simply too 
small  to be displayed using the precision chosen by the software package. I n  this 
case the P-values should be interpreted and reported as < 0 .00 1 .  There is  thus 
strong evidence that age and height are each associated with FEY 1 after contro l 
l ing for one another. 

Analysis of variance for multiple regression 

Example 1 1 . 1  (continued) 
We can examine the extent to which the joint effects of age and height explain the 
variation in  FEY 1 in an analysis of variance table (Table 1 1 . 3 ) .  There are now 
2 degrees of freedom for the regression as there are two exposure variables. The F 
test for this regression is 244.3 with (2,633) degrees of freedom ( P  < 0.000 1 ) . 

The regression accounts for 43 . 56% (25 .6383/58 .8584) of the total variation in 
FEY 1 .  This proportion equals R2, where R = J0.4356 = 0 .66 is defined as the 
multiple correlation coefficient. R is always positive as no direction can be attached 
to a correlation based on more than one variable. 

The sum of squares due to the regression of FEY1 on both age and height 
comprises the sum of squares explained by age ( = 1 5 .6802, derived from the simple 
l inear regression FEY 1 = (30 + /31 x age) plus the extra sum of squares explained 
by height after control l ing for age (Table 1 1 .4) . This provides an alternative means 
of testing the null hypothesis that there is no association of FEY 1 with height 
having controlled for its association with age. We derive an F statistic using the 
residual mean square from the multiple regression: 

F = 9.958 1 /0.05248 = 1 89 .75, d .f  = ( l ,633), P < 0.000 1 

Again, there is clear evidence of an association of FEY1 with height having 
controlled for its association with age. Note that the t statistic for height presented 
in the computer output shown in Table 1 1 .2 is exactly the square root of the F 
statistic: v' l 89 .75 = 1 3 .77 .  

Reversing the order in which the variables are entered into the model al lows us 
to test the nul l  hypothesis that there is no association with age having controlled 
for height :  this gives an F statistic 32.58, d .f  = ( 1 ,633) ,  P < 0.000 I .  Again this 
corresponds to the r statistic in  Table 1 1 . 2 : J32.58 = 5 .708. 

Table 1 1 .3 Analysis of  variance for the multiple regression relating FEV1 to age and height. 

F =  MS regression 

Source of variation SS d.f. MS MS residual 

Regression on age and height of child 25 .6383 2 1 2 .81 92 244.3, p < 0.0001 

Residual 33.2201 633 0.05248 

Total 58.8584 635 0.09269 
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Table 1 1 .4 Individual contributions of age and height of the ch i ld to the multiple regression including both 

variables, when age is entered into mu ltiple regression first. 

F =  
MS regression 

Source of variation SS d.f. MS MS residual 

Age 1 5 .6802 1 5 .6082 

Height adjusting for age 9.9581 9.9581 1 89.75, p < 0.0001 

Age and height 25 .6383 2 

Note that these two orders of breaking down the combined regression sum of 
squares from Table I 1 . 3 into the separate sums of squares do not give the same 
component sums of squares because the exposure variables (age and height )  are 
themselves correlated. However, the regression coefficients and their correspond
ing standard errors in Table I I .2 are unaffected by the order in which the exposure 
variables are l isted. 

1 1 . 3 M U L T I P L E  R E G R E S S I O N  W I T H  CAT E G O R I C A L  
E X P O S U R E  VA R I A B L E S  

Unti l  now, we have included only continuous exposure variables i n  regression 
models .  In fact, i t  is straightforward to estimate the effects of binary or other 
categorical exposure variables in regression models. We now show how to do this, 
and how the results relate to methods introduced in previous chapters. 

Regression with binary exposure variables 

We start by consideri ng a binary exposure variable, coded as 0 ( unexposed) or 
I (exposed) in the dataset. 

Example 1 1 . 1  (continued) 
A variable that takes only the val ues 0 and I is known as an indicator variable 
because it ind icates whether the individual possesses the characteristic or not .  
Computer output from the l inear regression of FEY 1 on variable male in the 
data on lung function in  Peruvian chi ldren is shown in Table 1 1 . 5 .  The interpret
ation of such output is  straightforward . 
1 The regression coefficient for the indicator variable is the difference between the 

mean in  boys (variable male coded as I )  and the mean in girls (variable male coded 
as 0) . The value of the t statistic (and corresponding P-value) for this coefficient i s  
identical to that  derived from the t test of the nul l  hypothesis that the mean in  girls 
is  the same as in boys (see Chapter 7) ,  and the confidence interval is identical to 
the confidence interval for the difference in  means, also presented in  Chapter 7. 

2 The regression coefficient for the constant term is the mean in girls (the group 
for which the indicator variable is coded as  0) .  

To see why th is  is the case, consider the equation for th is  regression model . This 
states that on average: 
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Table 1 1 .5 Computer output for the linear regression of FEV1 on gender of the child. 

FEV1 

Male 

Constant 

Coefficient 

0.1 1 89 

1 .5384 

Std err 

0.0237 

0.01 63 

5.01 

94.22 

FEY1 = /30 + /3 1 x male 

p > l t l 

0.000 

0.000 

95% Cl 

0.0723 to 0.1 655 

1 .5063 to 1 .5705 

Thus in girls, mean FEY 1 = /30 + /31 x 0 = /30 and so the estimated value of the 
i ntercept {30 ( the regression coefficient for the constant term) is  the mean FEY 1 in 
girls .  In boys, mean FEY 1 = /30 + /3 1  x 1 = /30 + /3 1 .  Therefore: 

/31 = mean FEY1 in boys - mean FEY1 in girls 

We may wish to ask whether the difference in  mean FEY 1 between boys and girls 
is  accounted for by differences in their age or height. This is done by including the 
three exposure variables together in a multiple regression model .  The regression 
equation is: 

FEY 1 = /30 + /3 1  x age + /32 x height + /33 x male 

Output for this model is  shown in Table 1 1 .6 .  The regression coefficient for variable 
male (/33 ) estimates the difference in mean FEY 1 in boys compared to girls, having 
allowed for the effects of age and height .  This is sl ightly increased compared to the 
mean difference before the effects of age and height were taken into account. 

Table  1 1 .6 Computer output for the multiple regression of  FEV1 on age, height and gender of the child. 

FEV1 Coefficient Std err p > l t l 95% Cl 

Age 0.0946 0.01 52 6.23 0.000 0.0648 to 0.1 244 

Height 0.0246 0.001 8 1 4.04 0.000 0.02 1 1  to 0.0280 

Male 0 . 1 2 1 3  0.01 76 6.90 0.000 0.0868 to 0.1 559 

Constant -2.360 0.1 750 -1 3.49 0.000 -2.704 to -2.01 66 

Regression with exposure variables with more than two categories 

The effects of categorical exposures with more than two levels (for example age
group or extent of exposure to cigarette smoke) are estimated by introducing a 
series of indicator variables to describe the differences. First we choose a baseline 
group to which the other groups are to be compared: often this is the lowest coded 
value of the variable or the group representing the unexposed category. I f  the 
variable has k. levels, k - 1 indicator variables are then included, corresponding to 
each non-baseline group. This is explained in more detai l  in the context of logistic 
regression, in the box in Section 1 9 . 3 .  The regression coefficients for the indicator 
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variables then equal the differences 1 11 mean outcome, comparing each non
baseline group with the baseline. 

1 1 . 4 G E N E R A L  F O R M  O F  T H E  M U L T I P L E  R E G R E S S I O N  M O D E L  

The general form of a multiple regression model for the effects of p exposure 
variables is: 

The quantity ,  f3o + f31x 1  + f32x2 + f33x3 + . . .  + /3pxp, on the right-hand side of the 
equation is  known as the linear predictor of the outcome y, given part icular values of 
the exposure variables x1 to Xp . The error, e, is normally distributed with mean zero 
and standard deviation CJ, which is estimated by the square root of the residual mean 
square. 

1 1 . 5 M U L T I P L E  R E G R E S S I O N  W I T H  N O N - L I N E A R  E X P O S U R E  
VA R I A B L E S  

I t  i s  often found that the relationsh ip between the outcome variable and an 
exposure variable is  non-l inear. There are three possible ways of incorporating 
such an exposure variable in  the multiple regression equation. The first method is 
to redefine the variable into distinct subgroups and include it as a categorical 
variable using indicator variables, as described in Section 1 1 . 3 ,  rather than as a 
numerical variable. For example, age could be divided into five-year age-groups. 
The relationship with age would then be based on a comparison of the means of the 
outcome variable i n  each age-group (assuming that mean outcome is approximately 
constant in each age group) but would make no other assumption about the form 
of the relationship of mean outcome with age. At the initial stages of an analysis, i t  
is  often useful to include an exposure variable in both forms, as a numerical 
variable and grouped as a categorical variable. The difference between the two 
associated sums of squares can then be used to assess whether there is an important 
non-linear component to the relationship. For most purposes, a subdivision into 3-
5 groups, depending on the sample size, is adequate to investigate non-linearity of 
the relationship. See Section 29.6 for more detai l .  

A second possibi l i ty is  to find a suitable transformation for the exposure 
variable. For example, in a study of women attending an antenatal clinic con
ducted to identify variables associated with the birth weight of their baby, it was 
found that birth weight was l inearly related to the logarithm of family income 
rather than to family income itself. The use of transformations is discussed more 
fully in Chapter 1 3 . The third possibi l ity is to find an algebraic description of the 
relationship. For example, it may be quadratic, in which case both the variable (x) 
and its square (x2 ) would be included in the model. This is described in more detail 
in Section 29.6 .  
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1 1 . 6 R E LA T I O N S H I P  B E TW E E N  M U L T I P L E  R E G R E S S I O N  A N D  
A N A LY S I S  O F  VA R I A N C E  

Analysis o f  variance i s  simply a special case o f  multiple regression. The two 
approaches give identical results. A regression model test of the nul l  hypothesis 
that there is no difference in mean response between k exposure groups uses an F 
test with (k - l ,  n - k )  degrees of freedom. This is identical to the F statistic 
derived using a one-way analysis of variance (see Chapter 9). Similarly, inclusion 
of two categorical variables (using indicator variables) in a multiple regression 
model will give identical results to a two-way analysis of variance. Analysis of 
variance can also be extended to examine differences between groups adjusted for 
the effects of numerical exposure variables, as described for multiple regression 
above, when the difference in FEY 1 between males and females was adjusted for 
age and height (Table l 1 . 6 ) .  In this context it is sometimes called analysis of 
covariance (Armitage and Berry 2002), and the numerical exposure variables are 
called covariates. 

1 1 .  7 M U LT I V A R I AT E  A N A L Y S I S  

M ultiple regression, and other regression models (see Chapters 1 9-2 1 ,  24 and 27) are 
often referred to as multivariate methods, since they investigate how an outcome 
variable is  related to more than one exposure variable. A better term for such models 
is to call them multivariable regression models. In the strict statistical sense, multi
variate analysis means the study of how several outcome variables vary together. The 
three methods most relevant to medical research will briefly be described. For more 
detail see Armitage and Berry (2002) and Everitt and Dunn (200 1 ) .  

Principal component analysis i s  a method used to  find a few combinations o f  
variables, called components, that adequately explain the overal l  observed vari
ation, and thus to reduce the complexity of the data. Factor analysis is a related 
method commonly used in the analysis of psychological tests. It seeks to explain 
how the responses to the various test items may be infl uenced by a number of 
underlying factors, such as emotion, rational thinking, etc. Finally, cluster analysis 
i s  a method that examines a collection of variables to see if individuals can be 
formed into any natural system of groups. Techniques used include those of 
numerical taxonomy, principal components and correspondence analysis. 
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I n  this chapter we discuss how to assess whether the distribution of an observed set 
of data agrees with that expected under a particular theoretical model. We start by 
considering how to assess whether the distribution of a variable conforms with the 
normal distribution, as assumed in the statistical methods described in  this part of 
the book. We then consider how to check the assumptions made in  fitting l inear 
and multiple regression models. The final part of the chapter is more general .  It 
describes the chi-squared goodness of fit test for testing whether an observed 
frequency distribution differs from the distribution predicted by a theoretical 
model. 

1 2 . 2  G O O D N E S S  O F  F I T  TO A N O R M A L D I S T R I B U T I O N  

The assumption o f  normality underlies the l inear regression, mul tiple regression 
and analysis of variance methods introduced earlier in this section . I t  can be 
checked by comparing the shape of the observed frequency distribution with 
that of the normal distribution. Formal significance testing is rarely necessary, 
as in general we are only interested in detecting marked departures from 
normality; the methods are robust against moderate departures so that param
eter estimates, confidence in tervals and hypothesis tests remain valid. If the 
sample size is  large, visual assessment of the frequency distribution is  often 
adequate. 

The main problem with departures from normality js that the standard errors of 
parameter estimates may be wrong. I n  Chapter 13 we describe how to transform 
variables to make them more normally distributed , and in Chapter 30 we see how 
to check for this problem by deriving alternative standard errors (for example 
using bootstrapping or robust standard errors) .  
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Fig. 1 2. 1  Frequency distributions with inverse normal plots to  assess the normality o f  the data. (a) and (c) 

Haemoglobin levels of 70 women (normally distributed, inverse normal plot l inear). (b) and (d) Triceps 

skinfold measurements of 440 men (positively skewed, inverse normal plot non-linear). 

Example 12. 1 
In Table 3 .2  we presented measurements of haemoglobin (g/ 1 00 ml )  in 70 women. 
The distribution of these measurements wil l be compared with that of triceps 
skinfold measurements made in 440 men . H istograms of these variables, together 
with the corresponding normal distribution curves with the same means and 
standard deviations, are shown in Figure 1 2. l (a)  and (b) .  For haemoglobin the 
shape seems reasonably similar to that of the normal distribution, while that for 
triceps skinfold is clearly positively (right-) skewed . 

Inverse normal plots 

The precise shape of the h istogram depends on the choice of groups, and it can be 
d ifficult to tell whether or not the bars at the extreme of the distribution are 
consistent with the normal distribution . A graphical technique that avoids these 
problems is the inverse normal plot. This is  a scatter plot comparing the values of 
the observed d istribution with the corresponding points of the normal d istribu
tion. The inverse normal plot is l inear i f  the data are normally distributed and 
curved if  they are not. The plot is  constructed as fol lows: 
1 The measurements are arranged in order, and the corresponding quanti les of 

the distribution are calculated as 1 /(n + 1 ) , 2/(n + 1 ) , . . .  n/(n + ! ) . Table 
1 2. l i l lustrates the calculations for the haemoglobin data. It shows the 
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Table 1 2 . 1  Calculations of points for inverse normal plot of 70 haemoglobin measurements. 

Observation Haemoglobin Inverse normal 

no. (g/1 00 ml) Quantile Prob it = 1 1 .98 + probit x 1 .41 

1 

34 

35 

70 

8.8 1 171  = 1 .4% -2.1 95 8.88 

1 1 .8 34171 = 49.3% -0.0 1 8  1 1 .96 

1 1 .9 35171 = 50. 7% 0.01 8 1 2 .01 

1 5. 1  70171 = 98.6% 2.1 95 1 5.09 

m1111mum ( 1 st ) ,  median (34th and 35th) and maximum (70th) haemoglobin 
measurements, together with their corresponding quantiles. 

2 For each measurement, the probit ( the value of the standard normal distribution 
corresponding to its quanti le) is derived using Table A6 in the Appendix or 
(more commonly) us ing a computer. For example, the value of the standard 
normal distribution corresponding to a quantile of 1 .4% is -2. 1 95 ,  s ince 1 .4% of 
the standard normal distribution l ies below this value. 

3 The corresponding points of the normal distribution with the same standard 
deviation and mean as the data are found by mult iplying the probit by 
the standard deviation, then adding the mean .  This is called the inverse 
normal: 

Inverse normal = mean + probit x s .d .  

For the haemoglobin data, the mean is 1 1 .98, and the standard deviation is  
1 .4 1  g/ 1 00 ml .  

4 Finally, the original values are plotted against their corresponding i nverse 
normal points. Figure 1 2 . l (c) shows the haemoglobin levels plotted against 
their corresponding inverse normal points. If haemoglobin levels are normally 
distributed then they should l ie along the l ine of identity (the l ine where y = x) 
shown on the plot. The plot is indeed l inear, confirming the visual impression 
from the h istogram that the haemoglobin data are normally d istributed. 

In  contrast, Figure 1 2. l (d )  shows the non-linear inverse normal plot corres
ponding to the positively skewed distribution of triceps skinfold measurements 
shown in  Figure 1 2. 1  (b ). The line is clearly curved, and i l lustrates the deficit of 
observations on the left and corresponding excess on the right .  

Skewness and kurtosis 

We now i ntroduce two measures that can be used to assess departures from 
normality. In Chapter 4 we saw that the variance is  defined as the average of the 
squared differences between each observation and the mean: 
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. ? L:(x - x)2 
Vanance s- = ( 

) n - 1 

Because the variance is based on the sum of the squared ( power 2 )  differences 
between each observation and the sample mean, it is sometimes cal led the 
second moment, 1112 = s2 . The third and fourth moments of a d istribution are 
defined in a similar way, based on the third and fourth powers of the differ
ences: 

. L:(x - .-\;)3 
Third moment m3 = ---

n 
and L:(x - x)4 

Fourth moment 1114 = ----
11 

The coefficients of skewness and kurtosis of a distribution are defined as: 

3 
skewness = 11131112 -2 and 

For any symmetrical distribution, the coefficient of skewness is zero : pos1t 1ve 
values of the coefficient of skewness correspond to a right-skewed distribution 
while negative values correspond to a left-skewed distribut ion.  

The coefficient of kurtosis measures how spread out are the values of a 
d istribution. For the normal distribution the coefficient of kurtosis is 3 .  I f  
the d istribution i s  more spread out than the normal distribution then the 
coefficient of kurtosis will be greater than 3 .  For example, Figure 6 .3  shows 
that compared to the normal distribution, the I distribution with 5 degrees of 
freedom is more spread out. The kurtosis of the t distribution with 5 d . f. is 
approximately 7 .6 .  

Example 12. 1 (continued) 
For the 70 measurements of haemoglobin (g/ 1 00 ml)  the coefficients of skewness 
and kurtosis were 0 . 1 70 and 2 .5 1 respect ively. This distribution shows l i t t le 
evidence of asymmetry, since the coefficient of skewness is close to zero. The 
coefficient of kurtosis shows that the spread of the observations was slightly less 
than would have been expected under the normal distribution . For the 440 
measurements of triceps skinfold (mm) the coefficients of skewness and kurtosis 
were 1 . 1 5  and 4.68 respectively. This distribution is right-skewed and more spread 
out than the normal distribution. 



Shapiro-Wilk test 

1 2.3 Regression diagnostics 1 1 1  

We stated at the start o f  this section that although the assumption o f  normality 
underlies most of the statistical methods presented in this part of the book, formal 
tests of this assumption are rarely necessary. However, the assumption of a normal 
distribution may be of great importance if we wish to predict ranges within which a 
given proportion of the population should lie. For example, growth charts for 
babies and infants include l ines within which it is expected that 90%, 99% and 
even 99.9°/c, of the population will l ie .  Departures from normality may be very 
important if we wish to use the data to construct such charts. 

The Shapiro-Wilk test (Shapiro and Wilk 1 965, Royston 1 993)  is a general 
test of the assumption of normality, based on comparing the ordered sample 
values with those which would be expected if the distribution was normal (as 
done in the inverse normal plots introduced earl ier). The mathematics of the 
test are a l ittle complicated , but it is available in many statistical computer 
packages. 

Example 12. 1 (continued) 
The P-values from the Shapiro-Wilk test were 0 .6 1 2  for the haemoglobin meas
urements and < 0 .000 I for the triceps measurements. As suggested by the quantile 
plots and coefficients of skewness and kurtosis, there is strong evidence against the 
assumption of normality for the triceps measurements, but no evidence against 
this assumption for the haemoglobin measurements. 

1 2 . 3  R E G R E S S I O N  D I A G N O S T I C S  

Examining residuals 

In  Chapters 1 0  and 1 1  we saw that linear and multiple regression models are fitted 
by minimizing the residual sum of squares: 

The di fferences [y - ( (30 + /31 x1 + (32x2 + . . .  )] between the observed outcome 
values and those predicted by the regression model (the dashed vertical l ines in 
Figures 1 0. 3  and 1 0 . 5 )  are called the residuals. As explained in Chapter 1 0, i t  is 
assumed that the residuals are normally distributed. This assumption can be 
examined using the methods introduced in the first part of this chapter. 

Example 12.2 
Figure I 2 .2(a) shows a histogram of the residuals from the multiple l inear regres
sion of FEY 1 on age, height and sex from the data on lung function in schoolchil
dren from Peru which were introduced in Chapter 1 1 , while Figure I 2 .2(b)  shows 
the corresponding inverse normal plot. The distribution appears reasonably close 
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FEV1 on age, height and sex. 

to normal except at the extreme left. The coefficients of skewness and kur tosis are 
-0.52 and 4.68 respectively, confirming this impression. 

The P-value from the Shapiro-Wilk test is less than 0 .000 1 so there is  clear 
evidence that the distribution is not normal .  However, Figure 1 2 .2  shows that the 
departure from normality is fairly modest and is unl ikely to undermine the results 
of the analysis. For fairly large datasets such as this one the Shapiro-Wilk test is  
extremely sensitive to departures from normality, whi le the central l imit theorem 
(see Chapter 5 )  means that the parameter estimates are likely to be normally 
distributed even though the residuals are not. 

A particular use of the residual plot is to detect unusual observations (outliers): 

those for which the observed value of the outcome is a long way from that 
predicted by the model . For example, we might check the data corresponding to 
the extreme left of the distribution to make sure that these observations have not 
resulted from coding errors in either the outcome or exposure variables. I n  
general ,  however, outl iers should not be omitted simply because they are a t  the 
extreme of the d istribution . Unless we know they have resulted from errors they 
should be included in our analyses. We discuss how to identify observations with a 
substantial influence on the regression l ine later in this section. 

Plots of residuals against fitted values 

Having estimated the parameters of a regression model we can calculate the fitted 
values (also called predicted values) for each observation in the data. For example, 
the fitted values for the regression of FEY 1 on age, height and gender (see Table 
I 1 . 6) are calculated using the regression equation: 

FEV 1 = -2.360 + 0.0946 x age + 0.0246 x height + 0. 1 2 1 3  x male 

where the indicator variable male takes the value 0 in  girls and 1 in boys. These 
values can be calculated for every child in the dataset . If the model fits the data wel l  
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Fig. 1 2 .3 Scatter plot of residuals against fitted values, for the regression of FEV1 on age, height and 

gender. 

then there should be no association between the fitted values and the residuals .  
This assumption can be examined in a scatter plot, as shown in Figure 1 2 . 3 .  

There is no strong pattern in Figure 1 2 .3 ,  but  i t  does seem that the variability in  
the  residuals increases a l i ttle with increasing fitted values, and that there may be  a 
U-shaped relationship between the residuals and the fi tted values. We might 
investigate this fur ther by examining models which allow for quadratic or other 
non-l inear associations between FEY 1 and age or height (see Section 29 .6) .  

A common problem is that the variability (spread) of the residuals i ncreases 
with increasing fitted values. This may indicate the need for a log transformation of 
the outcome variable (see Section 1 3 .2 ) .  

Influence 

A final consideration is  whether individual observations have a large influence on 
the estimated regression l ine. I n  other words, would the omission of a particular 
observation make a large difference to the regression? 

Example 12.3 
Figure 1 2 .4 is a scatter plot of a hypothetical outcome variable y against an 
exposure x. There appears to be clear evidence of an association between x and 
y: the slope of the regression l ine is 0 .76, 95% CI = 0.32 to 1 . 1 9, P = 0.004. 
However, inspection of the scatter plot leads to the suspicion that the association 
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Fig. 1 2 .4 Scatter plot of a hypothetical outcome variable y against an exposure x, in which there is a highly 

influential observation at the top right of the graph. 

is mainly because of the point at the top right of the graph. The point is  close to 
the regression line, so examining the residuals will not reveal a problem. 

To assess the dependence of the regression on individual observations we calcu
late influence statistics. The most commonly used measure of influence is  Cook's D. 
These statistics are l isted , together with the residuals, in Table 1 2 .2 .  I t  can be seen 
that observation l 0 ( the point on the top right of the graph) has much greater 
infl uence than the other observations. I t  would be appropriate to check whether 
this point arose because of an error in  coding or data entry, or i f  there is  some 

Table 1 2.2 Data plotted in Figure 1 2.4, together with the influence statistic and 
residual for each observation. 

Observation 

3 

4 

6 

8 

9 

1 0  

y 

2.94 

3.32 

1 .44 

2.05 

2.90 

2.38 

2.67 

3.85 

2.60 

8.00 

x 
3.39 

3.83 

1 .63 

3.80 

1 .94 

1 .30 

3.07 

1 .53 

3.38 

8.00 

Influence (Cook's D) Residual 

0.01 -0.43 

0.01 -0.38 

0.04 -0.61 

0.1 5 -1 .63 

0.03 0.63 

0.05 0.59 

0.01 -0.45 

0.39 1 .89 

0.03 -0.76 

8.25 1 . 1 5  
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clear explanation fo r  i t  being different from the rest o f  the population. As 
discussed earl ier, observations should not be omitted from the regression purely 
because they have large residuals or have a large influence on the results . How
ever, we might check whether similar conclusions are reached if an observation is 
omitted: and perhaps present results both including and excluding a highly influ
ential observation. 

Another useful plot is a scatter plot of influence against residuals (or squared 
residual )  for each observation. Observations with large infl uence, large residuals 
or both may lead to further checks on the data, or attempts to fit different 
regression models .  Standardized residuals, which are the residual divided by its 
standard error, are also of use in checking the assumptions made in regression 
models. These are d iscussed in more detail in Draper and Smith ( 1 998)  and 
Weisberg ( 1 985 ) .  

What to do if  the regression assumptions appear to be violated 

The more checks we make, the more l ikely we are to find possible problems with 
our regression model . Evidence that assumptions are violated in one of the ways 
discussed here is not a reason to reject the whole analysis. It is very important to 
remember that provided that the sample size is reasonably large the results may 
well be robust to violation of assumptions. However, possible actions that might 
be taken include: 
• checks for mistakes in  data coding or data entry which have led to outlying or 

influential observations; 
• exploration of non-linear relationships between the outcome and exposure 

variables; 
• sensitivity analyses which examine whether conclusions change if influential 

observations are omitted; 
• use of transformations as described in the next chapter; 
• use of methods such as bootstrapping to derive confidence intervals independ

ently of the assumptions made in the model about the distribution of the 
outcome variable. These are discussed in Chapter 30. 

1 2 .4  C H I - S Q U A R E D  G O O D N E S S  OF F I T  T E S T  

I t  i s  sometimes useful t o  test whether a n  observed frequency distribution differs 
significantly from a postu lated theoretical one. This may be done by comparing the 
observed and expected frequencies using a chi-squared test. The form of the test is : 

X
2 = z:, 

( 0 - E)2 

E 
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This is exactly the same as that for contingency tables, which i s  introduced in 
Chapter 1 7 . Like the I distribution, the shape of the chi-squared distribution 
depends on the degrees of freedom. Here, these equal the number of groups in 
the frequency distribution minus 1 ,  min us the number of parameters estimated 
from the data. In fitt ing a normal distribution, two parameters are needed, its 
mean, µ, and its standard deviation, u .  In some cases no parameters are estimated 
from the data, either because the theoretical model requires no parameters, as in  
Example 1 2.4 below, or because the parameters are specified as  part of the model. 

d . f. = 
number of groups 

in frequency 
distribution 

number of 
- parameters -

estimated 

Calculation of expected numbers 

The first step in carrying out a chi-squared goodness of fit test is to estimate the 
parameters needed for the theoretical distribution from the data. The next step is  
to calculate the expected numbers in each category of the frequency distribution, 
by multiplying the total frequency by the probability that an individual value falls 
within the category. 

Expected 
frequency 

total 
frequency 

probabi l ity individual fal ls 
x 

within category 

For discrete data, the probability is calculated by a straightforward application of 
the d istributional formula. This is i l lustrated later in the book for the Poisson 
distribution (see Example 28 .3 ) .  

Validity 

The chi-squared goodness of fit test should not be used if more than a small 
proportion of the expected frequencies are less than 5 or i f  any are less than 2 .  This 
can be avoided by combining adjacent groups in  the d istribution. 

Example 12.4 
Table 1 2. 3  examines the distribution of the final d igit of the weights recorded in a 
survey, as a check on their accuracy. N inety-six adults were weighed and their 
weights recorded to the nearest tenth of a kilogram. If there were no biases in 
recording, such as a tendency to record only whole or half ki lograms, one would 
expect an equal number of Os, l s, 2s . . .  and 9s for the final digit, that is  9.6 of each . 
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Table 1 2 .3 Check o n  the accuracy i n  a survey of recording weight. 

(0 - £)2 
Final digit of weight Observed frequency Expected frequency E 

0 1 3  9.6 1 .20 

1 8 9.6 0.27 

2 1 0  9.6 0.02 

3 9 9.6 0.04 

4 1 0  9.6 0.02 

5 1 4  9.6 2.02 

6 5 9.6 2 .20 

7 1 2  9.6 0.60 

8 1 1  9 .6 0.20 

9 4 9.6 3.27 

Total 96 96.0 9.84 

The agreement of the observed d istribution with this can be tested using the chi
sq uared goodness of fit test .  There are ten frequencies and no parameters have 
been estimated. 

? (0 - £)2 
x- = 2= 

E = 9 .84, d .f .  = 1 0  - 0 - l = 9, P = 0 .36 

The observed frequencies therefore agree well with the theoretical ones, suggesting 
no recording bias. 
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Transformations 
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Positively skewed distributions 

U nequal standard deviations 

Geometric mean and confidence interval 

1 3 . 1  I N T R O D U CT I O N  

Non-linear relationship 

Analysis of titres 

1 3 .3 Choice of transformation 

1 3 .4 z-scores and reference curves 

The assumption of normality will not always be satisfied by a particular set of data. 
For example, a d istribution may be positively skewed and this wil l often mean that 
the standard deviations in different groups will be very different .  Or a relationship 
between the outcome and exposure variable(s) may not be l inear, violating the 
assumptions of the l inear and multiple regression methods introduced in this part of 
the book. We wil l  now describe how such problems can often be overcome simply 
by transforming the data to a different scale of measurement. By far the most 
common choice is the logarithmic transformation, which will be described in detai l .  
A summary of the use of other transformations wi l l  then be presented. 

Finally, in the last section of the chapter, we describe the use of z-scores to 
compare data against reference curves in order to improve their inte1pretability. In 
particular, we explain why this is the standard approach for the analysis of 
anthropometric data. 

1 3 . 2  L O G A R I T H M I C T R A N S F O R M A T I O N  

When a logarithmic transformation is applied to a variable, each individual value 
is replaced by its logarithm . 

u = 1og x 

where x is the original value and u the transformed value. The meanmg of 
logarithms is easiest to understand in reverse. We will start by explaining this 
for logarithms to the base 1 0. 

I f  x = 1 0u ,  then by definition 'u is the logari thm (base 1 0) of x' 
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log0x -2 -1 0 2 3 4 5 6 
I I I I I I I I I 

x 0.14 0.37 2.7 7.4 20.1 54.6 1 48.4 403.4 

log10 x -1 0 2 3 

x 0 .1  0 .2  0 .5  2 5 1 0  2 0  50 1 00 200 500 1 000 

Fig. 1 3 . 1  The logarithmic transformation, using base 10  (lower l ine) and base e (upper l ine) .  

Thus, for example, since 1 00 = 1 02 , 2 = loglO( l OO) ,  and since 0 . 1 = 1 0- 1 , 
- 1  = log lO(O .  l ) . Different val ues of x and logl O(x) are shown in the lower part 
of Figure 1 3 . 1 .  The logari thmic transformation has the effect of stretching out the 
lower part of the original scale, and compressing the upper part . For example, on 
a logarithmic scale, the distance between I and 1 0  is the same as that between 1 0  
and l 00 and as that between I 00 and l 000; they are all ten-fold differences. 

Although logarithms to base 1 0  are most easily understood , statistical packages 
general ly use logarithms to base e, where e is the 'natural constant ' :  

e = 2. 7 1 828 1 8  

The function e' is called the exponential function and is often written as exp(x). 

I f  x = e", then by definition 'u i s  the logarithm (base e) of x' 

Logarithms to base e are also known as natural logarithms. For example, 
7 .389 = e2 so 2 = loge( 7 .389) ,  20.086 = e3 so 3 = loge(20.086), and 0 .3679 = e- 1 

so - 1  = loge(0.3679) .  Different values of x and loge(x) are shown in the upper part 
of Figure 1 3 . 1 .  Note that logarithms to base 1 0  are simply logarithms to base e 
multipl ied by a constant amount: 

Throughout this book, we will use logarithms to base e (natural logarithms) . 
We wil l  omit the subscript, and refer simply to log(x) . The notation l n(x) is  
a lso used to refer to natura l  logarithms. For more on the laws of logarithms 
see Section 1 6.5 ,  where we show how logarithmic transformations are used 
to derive confidence intervals for ratio measures such as risk ratios and odds 
ratios. 
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Logarithmic transformations can only be used with positive values, since logarithms 
of negative numbers do not exist, and the logarithm of zero is  minus infinity. There 
are sometimes instances, however, when a logarithmic transformation is indicated, 
as in  the case of parasite counts, but the data contain some zeros as well as posit ive 
n umbers . This problem can be solved by adding a constant to each value before 
transforming, although i t  must be remembered that the choice of the constant does 
affect the results obtained. One is a common choice. Note also that 1 must then also 
be subtracted after the final results have been converted back to the original scale .  

Positively skewed distributions 

Example 13. 1 
The logarithmic transformation wil l tend to normalize positively skewed d istribu
tions, as i l lustrated by Figure 1 3 .2, which is the resul t  of applying a logarithmic 
transformation to the triceps skinfold data presented in Figure 1 2. l (b) .  The 
h istogram is now synunetrical and the inverse normal plot l inear, showing that 
the transformation has removed the skewness and normalized the data. Triceps 
skinfold is said to have a Iognormal distribution. 

140 E' 3.5 
120 E 3 en 
100 ,., 

.Q :; 2.5 
u � 80 
::i 
g 60 

:E c: 2 :x 
<11 .t � 1 .5 40 "' u 

20 ·.s 1 en 0 
0 .5 

..J .5 1 .5 2 2.5 3 3.5 .5 1 .5 2 2.5 3 3.5 
Log triceps skinfold (log mm) Inverse normal 

Fig. 1 3 .2 Lognormal distribution of triceps skinfold measurements of 440 men. Compare with Figure 1 2 . 1  

(b) and (d). 

Unequal standard deviations 

Example 13.2 
The mechanics of using a logarithmic transformation wil l be described by con
sidering the data of Table 1 3 . l (a), which show a higher mean urinary [3-thrombo
globul in ([3-TG) excretion in 1 2  diabetic patients than in  1 2  normal subjects. These 
means cannot be compared using a t test since the standard deviations of the two 
groups are very different. The right-hand columns of the table show the observa
tions after a logarithmic transformation. For example, loge(4. l )  = 1 .4 1 . 

The transformation has had the effects both of equalizing the standard devi
ations (they are 0 .595 and 0.637 on the logarithmic scale) and of removing 
skewness in  each group (see Figure 1 3 .3 ) .  The t test may now be used to examine 
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Table 1 3. 1  Comparison of urinary 13-thromboglobulin (13-TG) excretion in 1 2  normal subjects and in 1 2  diabetic 

patients. Adapted from results by van Oest, B.A., Veldhuyzen, B .. Timmermans, A.P.M. & Sixma, J . J .  ( 1 983) 

Increased urinary 13-thromboglobulin excretion in diabetes assayed with a modified RIA. Kit-Technique. Thrombosis 

and Haemostasis (Stuttgart) 49 (1 ): 1 8-20, with permission. 

(a) Original and logged data. 

13-TG 

(ng/day/1 00 ml creatinine) 

Normals Diabetics 

4.1 1 1 .5 

6.3 1 2 . 1  

7 .8 1 6. 1  

8.5 1 7.8 

8.9 24.0 

1 0.4 28.8 

1 1 .5 33.9 

1 2 .0 40.7 

1 3 .8 51 .3 

1 7.6 56.2 

24.3 61 .7 

37.2 69.2 

Mean 1 3 .53 35.28 

s.d. 9. 1 94 20.27 

n 1 2  1 2  

(b) Calculation of t test o n  logged data. 

s = j[(1 1 x 0.5952 + 1 1  x 0.6372 )/22] = 0.61 6 

t = 2 .433 - 3 ·391 = -3.81 d.f . = 22 p = 0.001 
0.61 6)1 /1 2 + 1 / 1 2  ' . ' 

(c) Results reported in original scale. 

Normals 

Diabetics 

Geometric mean 13-TG 

exp(2.433) = 1 1 .40 

exp{3.391 ) = 29.68 

95% Cl 

7.81 to 1 6.63 

1 9.81 to 44.49 

Log 13-TG 

(log ng/day/1 00 ml creatinine) 

Normals Diabetics 

1 .41 2.44 

1 .84 2 .49 

2.05 2.78 

2 . 1 4 2.88 

2 . 1 9 3 . 1 8  

2.34 3.36 

2.44 3 .52 

2.48 3 .71  

2.62 3.94 

2.87 4.03 

3 . 1 9 4 . 1 2 

3.62 4.24 

2.433 3.391 

0.595 0.637 

1 2  1 2  

differences in  mean log (3-TG between d iabetic patients and normal subjects. The 
detai ls of the calculations are presented in Table 1 3 . 1  (b ) .  

Geometric mean and  confidence interval 

Example 13.2  (continued) 
When using a transformation, al l  analyses are carried out on the transformed 
values, u. It is important to note that this includes the calculation of any 
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(a) (b) 
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Fig. 1 3 .3 [3-Thromboglobulin data (Table 1 3 . 1 )  drawn using (a) a linear scale and (b) a logarithmic scale. 

Note that the logarithmic scale has been labelled in the original units. 

confidence intervals. For example, the mean log 13-TG of the normals was 
2.433 log ng/day/ l 00 ml. Its 95% confidence interval is: 

95% C I = 2 .433 - 2 .20 x 0.595/ v'l 2  to 2 .433 - 2 .20 x 0 .595/)1 2  

= 2.055 to 2 .8 1 1 ng/ day/ I 00 ml 

Note that 2 .20 is  the 5% point of the t distribution with 1 1  degrees of freedom. 
When reporting the final results, however, i t  is  sometimes clearer to transform 

them back into the original units by taking antilogs (also known as exponentiat
ing), as done in Table 1 3 . l (c) .  The antilog of the mean of the transformed values is  
called the geometric mean. 

Geometric mean (GM) = antilog(u) = exp(u) = eu 

For example, the geometric mean 13-GT of the normal subjects is :  

Anti log(2.433) = e2433 = J l . 39 ng/day / 1 00 ml 

The geometric mean is always smaller than the corresponding arithmetic mean 
( un less all the observations have the same value, in  which case the two measures 
are equal) .  Un l ike the arithmetic mean, it is not overly influenced by the very large 
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values in a skewed distribution, and so gives a better representation of the average 
in this situation . 

I ts confidence interval is calculated by exponentiating the confidence l imits 
calculated on the log scale. For the normal subjects, the 95% confidence interval 
for the geometric mean therefore equals: 

95% CI = exp(2 .055) to exp(2 .8 l I ) = 7 .8 1 to 1 6 .63 ng/day/ 1 00 ml 

Note that the confidence in terval is not symmetric about the geometric mean.  
I nstead the rat io of the upper l imit  to the geometric mean, 1 6.63/ 1 1 . 39 = 1 .46, is 
the same as the ratio of the geometric mean to the lower limit, 1 1 . 39 /7 .8 1 = 1 .46. 
This reflects the fact that a standard deviation on a log scale corresponds to a 
multiplicative rather than an additive error on the original scale. For the same 
reason, the anti log of the standard deviation is not readi ly in terpretable, and 1s 
therefore not commonly used . 

Non-linear relationship 

Example 13.3 
Figure I 3 .4(a) shows how the frequency of 6-thioguanine (6TG) resistant lympho
cytes increases with age. The relationship curves upwards and there is greater scatter 
of the points at older ages. Figure 1 3 .4(b) shows how using a log transformation for 
the frequency has both linearized the relationship and stabil ized the variation. 

In  this example, the relationship curved upwards and the y variable ( frequency) 
was transformed. The equivalent procedure for a relationship that curves down
wards is to take the logarithm of the x value. 

(a) 
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Fig.  1 3 .4 Relationship between frequency of 6TG-resistant lymphocytes and age for 37 individuals drawn 

using (a) a l inear scale, and (b) a logarithmic scale for frequency. Reprinted from Morley et al. Mechanisms of 
Ageing and Development 1 9 :  2 1 -6, copyright (1 982), with permission from Elsevier Science. 
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Analysis of titres 

Many serological tests, such as the haemagglutination test for rubella antibody, 
are based on a series of doubling d il ut ions, and the strength of the most di lute 
solution that provides a reaction is recorded. The results are called titres, and are 
expressed in terms of the strengths of the d ilutions: l /2, 1 /4, 1 /8 ,  1 1 1 6, l /32, etc. For 
convenience, we wil l use the terminology more loosely, and refer i nstead to the 
reciprocals of these numbers, namely 2, 4, 8 ,  1 6, 32, etc., as t itres. Titres tend to be 
positively skewed, and are therefore best analysed using a logarithmic transform
ation. This is accomplished most easily by replacing the t itres with their corres
ponding dilution numbers. Thus titre 2 is  replaced by di lut ion number 1 ,  t i tre 4 by 
2, t itre 8 by 3, t i tre 1 6  by 4, t i tre 32 by 5, and so on. This is equivalent to taking 
logarithms to the base 2 since, for example, 8 = 23 and 1 6  = 24 . 

u = dilution number = log2 t itre 

All analyses are carried out using the d ilution numbers. The results are then 
t ransformed back into the original units by calculating 2 to the corresponding 
power. 

Example 13.4 
Table 1 3 .2 shows the measles antibody levels of ten children one month 
after vaccination for measles. The results are expressed as t i tres with their cor
responding dilution numbers. The mean di lution number is u = 4.4. We antilog 
this by calculating 24.4 = 2 1 . 1 .  The result is the geometric mean titre and 
equals 2 1 . 1 .  

Geometric mean t i tre = 2mean dilution number 

Table 1 3 .2 Measles antibody levels one month after vaccination. 

Child no. Antibody titre Dilution no. 

1 8 3 

2 1 6  4 

3 1 6  4 

4 32 5 

5 8 3 

6 1 28 7 
7 1 6  4 

8 32 5 

9 32 5 

1 0  1 6  4 
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1 3 . 3  C H O I C E  O F  T R A N S F O R M AT I O N  

A s  previously mentioned, the logarithmic transformation i s  b y  far the most fre
quently applied. I t  is appropriate for removing positive skewness and is used on a 
great variety of variables including incubation periods, parasite counts, t i t res, 
dose levels, concentrations of substances, and ratios. There are, however, a lter
native transformations for skewed data as summarized in Table 1 3 . 3 .  For 
example, the reciprocal transformation is stronger than the logarithmic, and 
would be appropriate i f  the distribution were considerably more positively 
skewed than lognormal, while the square root transformation i s  weaker. Negative 
skewness, on the other hand, can be removed by using a power transformation, such 
as a square or a cubic transformation, the strength increasing with the order of the 
power . 

Table 1 3.3 Summary of different choices of transformations. Those removing positive skewness are called 

group A transformations, and those removing negative skewness group B. 

Situation 

Positively skewed distribution (group A) 

Lognormal 

More skewed than lognormal 

Less skewed than lognormal 

Negatively skewed distribution (group B) 

Moderately skewed 

More skewed 

Unequal variation 

s.d. proportional to mean 

s.d. proportional to mean2 

s.d. proportional to Jmean 

Non-linear relationship 

lL 
lC 
'� 
'� x 

Transformation 

Logarithmic (u = log x) 

Reciprocal (u = 1 / x) 

Square root (u = Jx) 

Square (u = x2) 

Cubic (u = x3) 

Logarithmic (u = logx) 

Reciprocal (u = 1 / x) 

Square root (u = Jx) 

Transform: y variable and/or x variable 

Group A (y) Group B (x) 

Group B (y )  Group A ( x )  

Group A (y )  Group A ( x )  

Group B ( y )  Group B ( x )  
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There is a similar choice of transformation for making standard deviations 
more similar, depending on how much the size of the standard error i ncreases 
with increasing mean. ( I t  rarely decreases. )  Thus, the logarithmic transformation 
is  appropriate i f  the standard deviation increases approximately in proportion to 
the mean, while the reciprocal is appropriate if the increase is  steeper, and the 
square root if i t  is less steep. 

Table 1 3 .3  also summarizes the different sorts of simple non-linear relationships 
that m ight occur. The choice of transformation depends on the shape of the curve 
and whether the y variable or the x variable is to be transformed. 

1 3 . 4  z- S C O R E S  A N D R E F E R E N C E  C U R V E S  

In  this section we consider a different type o f  transformation; namely the use of z

scores to compare data against reference curves in order to improve their interpret
ability . Their most common use is for the analysis of anthropometric data. 
For example, an individual's weight and height cannot be in terpreted unless they 
are related to the individual's age and sex. More specifical ly they need to be 
compared to the d istribution of weights (or heights) for individuals of the same 
age and sex in an appropriate reference population, such as the NCHS/WHO* 
growth reference data. 

Recall from Section 5.4 that a z-score expresses how far a value is from the 
population mean, and expresses this difference i n  terms of the number of standard 
deviations by which it differs. In the context here, a z-score is  used to compare a 
particular value with the mean and standard deviation for the corresponding 
reference data: 

x - µ  
z-score = -

CJ 

where x is the observed value, µ is the mean reference valuet and CJ the standard 
deviation of the corresponding reference data. A z-score is  therefore a value from 
the standard normal distribution. 

*NCHS/WHO growth reference data for height and weight of US children collected by the National 

Center for Health Statistics and recommended by the World Health Organization for international use. 

tThe NCHS/WHO reference curves were developed by fitting two separate half normal distributions 

to the data for each group. Both distributions were centred on the median value for that age. One 

distribution was fitted so that its upper half matched the spread of values above the median, and the 

other so that its lower half matched the spread of values below the median. The upper half of the first 

curve was then joined together at the median with the lower half of the second curve. This means that 

the z-score calculations use the median value for that age, and the standard deviation corresponding to 

either the upper or the loiver half of the distribution for that age, depending on whether the observed 

value is respectively above or beloiv the median. 
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The analysis can then be carried out with the calculated z-scores as the 
outcome variable. Such a .:-score value will have the same interpretation regard
less of the age or sex of the individual. Thus, for example, individuals with weight
for-age z-scores of -2 or below compare approximately with the bottom 2% of 
the reference population, since 2 .3% of the standard normal curve l ies below 
-2 (see Appendix A I ) . This interpretation is t rue whatever the ages of the 
individuals. 

Example 13.5 
An example of an analysis based on z-scores is given 1 11  Figure 1 3 . 5 ,  which 
shows the mean weight-for-age z-scores (based on the NCHS/WHO growth 
curves) during the first 5 years of l ife for children in the Africa, Asia and 
Latin America/Caribbean regions. A mean z-score of zero would imply that the 
average weight of children in the region is exactly comparable to the average 
weight of American children of the same age in the NCHS/WHO reference 
population.  A mean z-score above zero would imply that children in the region 
were on average heavier than their reference counterparts, while a mean 
.:-score below zero implies that on average they are l ighter. The curves in 
Figure 1 3 . 5  i l lustrate how in all three regions there is rapid growth faltering that 
starts between 3 and 6 months of age, and that by one year of age in  all 
three regions the average child is very considerably underweight compared to 
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Fig. 1 3 . 5  Comparison of weight for age by region for children aged less than 5 years. Reprinted with 

permission from Shrimpton R, Victora CG, de Onis M, Lima RC. Bloessner M,  Clugston G, Worldwide timing 

of growth faltering. Pediatrics 2001 ; 1 07 :  E75 
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their counterparts in the reference population. I t  further shows that the level of 
d isadvantage is most pronounced in Asia and least so i n  Latin America/Carib
bean, with Africa in between. 

See the report by the WHO Expert Commit tee on Physical Status ( 1 995 )  for  a 
detailed guide to the analysis and interpretation of anthropometric data. 



P ART C 

A NA L YS IS O F  B I NA R Y  O UT C O M ES 

I n  this part of the book we describe methods that are used when the outcome is a 
binary variable; a variable where for each individual in the sample the value is one of 
two alternatives. For example, at the end of the study a subject may have experi
enced the particular disease (or event) of interest, or remained healthy. Other 
examples are that a patient d ies or survives, or that a specimen is posit ive or negative. 

Of particular i nterest is the proportion ( p) of individuals in our sample who 
experience the event of in terest .  We use this sample proportion to estimate the 
probability or risk of the event in the population as a whole. For example, we 
might be interested in :  
• the r isk of death in the five years following diagnosis of prostate cancer; 
• the risk of vertical transmission of HIV during pregnancy or childbirth in H IV-

infected mothers given antiretroviral therapy during pregnancy. 
Probabil it ies, risks and the related concept of the odds of an event are described 
in Chapter 1 4, together with the rules for calculating and manipulating probabil
i t ies. This lays the foundations for the rest of this part of the book. In Chapter 1 5 , 
we derive the sampling distribution of a proportion, which is known as the 
binomial distribution, and show how it can be approximated by the normal 
distribution to give a confidence interval and z-test for a single proportion . In 
Chapter 1 6  we describe different ways to compare the occurrence of a binary 
outcome in two exposure groups; by examining the difference between the pro
portions, the ratio of the risks, or the ratio of the odds. In Chapter 1 7, we cover the 
use of chi-squared tests to examine associations between categorical exposure and 
outcome variables. 

Confounding, which was briefly introduced in Chapter 1 1 , i s  explained in  detail 
in  Chapter 1 8 . It arises when there are differences between the exposure groups, in 
addition to the exposure itself, which are related to the outcome variable. We 
show how Mantel-Haenszel methods may be used to control for confounding 
using stratification; failure to do this would bias the interpretation of the compari
son of the exposure groups. 

In Chapter 1 9  we introduce logistic regression for the analysis of binary outcome 
variables, and describe how it can be used to compare two or more exposure 
groups. We extend this in Chapter 20, by explain ing the control of confounding 
using logistic regression, and briefly describing other regression models for binary 
and categorical outcome variables. Finally, Chapter 2 1  introduces the special 
methods needed for matched data, in particular matched case-control studies. 
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Probability, risk and odds {of disease) 

1 4. 1  Introduction Multiplicative rule 

1 4.2 Defining probabi l ity Additive rule 

Frequentist defin ition: probability 1 4.4 Bayes' rule 

and risk 1 4.5 The independence assumption 

Subjective (or Bayesian) definition 1 4.6  Probabilities and odds 

1 4.3 Probability calculations 

1 4 . 1  I N T R O D U C T I O N  

Probabil ity has already been used several times in preced ing chapters, its meaning 
being clear from the context. We now need to introduce it more formally and to 
give rules for manipulating it ,  before we can introduce methods for the analysis of 
binary outcome variables. We need to do this for two reasons: 
1 There is a close l ink between the proportion of ind ividuals in the sample who 

experience the event of interest defined by the binary outcome variable, and the 
definit ion of the probability or risk that an individual in the population as a 
whole wil l  experience the outcome event (see Section 1 4.2 ) .  

2 We need to be able to carry out  calculations involving probabili ties in  order to  
be able to derive the  binomial distribution that describes the  sampling distribu
tion of a proportion. This is done in the next chapter. 

1 4 . 2  D E F I N I N G  P R O B A B I L I TY 

Frequentist defin ition: probabil ity and risk 

Although probabil ity is a concept used in everyday l ife, and one with which we have 
an intuit ive fam iliarity, it is  difficult to define exactly .  The frequentist definition is 
usually used in statist ics. This states that the probability of the occurrence of a 
particular event equals the proportion of times that the event would (or does) occur 
in a large number of similar repeated trials. It has a value between 0 and I ,  equalling 
0 if the event can never occur and I i f it is certain to occur. A probabil ity may also be 
expressed as a percentage, taking a value between 0% and I 00%. For example, 
suppose a coin is  tossed thousands of t imes and in half the tosses i t  lands head up 
and in  half i t  lands tai l up. The probabil i ty of getting a head at any one toss would be 
defined as one-half, or 50%. 

Similarly the probability of death in the five years following diagnosis of prostate 
cancer would be defined as the proportion of times that this would occur among 
a large number of men diagnosed with prostate cancer. This probabil i ty is then 
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said to be the risk of death 111 the five years following diagnosis of prostate 
cancer. 

Subjective (or Bayesian) definition 

An alternative approach is to use a subjective definition, where the size of the 
probability simply represents one's degree of belief in  the occurrence of an event, 
or in  an hypothesis. This definition corresponds more closely with everyday usage 
and is the foundation of the Bayesian approach to statistics. In this approach, the 
investigator assigns a prior probability to the event (or hypothesis) under investi
gation. The study is then carried out, the data collected and the probabil i ty 
modified in  the l ight of the results obtained, using Bayes' rule (see Section 1 4.4) . 
The revised probability is called the posterior probability. The Bayesian approach 
to statistical inference is described in Chapter 33 .  

1 4 . 3  P R O BA B I L I TY C A L C U LATI O N S  

There are just two rules underlying the calculation of all probabilit ies. These are: 
1 the multiplicative rule for the probabil ity of the occurrence of both of two events, 

A and B ,  and; 
2 the additive rule for the occurrence of at least one of event A or event B. This is 

equivalent to the occurrence of either event A or event B (or both) . 
We will i l lustrate these two rules in the context of the fol lowing example. 

Example 14. 1 
Consider a couple who plan to have two children. There are four possible com
binations for the sexes of these children, as shown in Table 1 4. 1 .  Each combin
ation is  equally l ikely and so has a probabi l i ty of 1 14. 

Multiplicative rule 

Table 1 4. 1  Possible combinations for the sexes of 

two children, with their probabilities. 

Second child 

First child Boy Girl 

Boy 1 /2 

Girl 1 /2 

1 /2 1 /2 

1 /4 1 /4 

(boy, boy) (boy, girl) 

1 /4 1 /4 

(girl, boy) (girl, girl) 

In fact each of these probabi l i ties of 1 /4 derives from the individual probabil ities 
of the sexes of each of the children. Consider in more detail the probabil i ty that 
both children are girls. The probabi l ity that the first child is  a girl is 1 /2 .  There is  
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then a probabil ity of 1 /2 of this ( i .e .  1 /2 of 1 /2 = 1 /4) that the second child wil l 
also be a girl . Thus: 

Prob (both children are girls) = prob (first child is  a girl) x 

prob (second child is a girl) 

= l /2 x l /2 = 1 /4 

The general rule for the probability of both of two events is :  

Prob (A and B)  = prob (A) x prob (B  given that A has occurred) 

Prob (B given that A has occurred) is called a conditional probability, as it is  the 
probabil ity of the occurrence of event B conditional upon the occurrence of event 
A .  If the l ikel ihood of event B is unaffected by the occurrence or non-occurrence 
of event A, and vice versa, events A and B are said to be independent and the rule 
simplifies to: 

Prob (A and B) = prob (A) x prob (B) ,  i f  A and B are independent 

The sexes of children are independent events as the probabil ity that the next child 
is a girl is  uninfluenced by the sexes of the previous children. An example with 
dependent events is  the probabil ity that a young girl in  India is both anaemic and 
malnourished, since she is much more l ikely to be anaemic if  she is malnourished 
than if  she is not. We explore how Bayes' rule can help us understand rel ations 
between dependent events in Section 1 4.4. 

Additive rule 

We now turn to the additive rule, which is used for calculating the probabil i ty that 
at  least one of event A or event B occurs. This is  equivalent to either (i) A alone 
occurs, or ( i i )  B alone occurs, or ( i i i )  both A and B occur. For example, consider the 
probabil ity that the couple will have at least one girl if they have two children . We 
can see from Table 1 4. 1 that this would happen in three of the four possible 
outcomes; i t  would not happen if  both children were boys. The probability that 
the couple would have at least one girl is therefore 3/4. Note that i t  is  not simply the 
sum of the probabi l i ty that the first child is a girl plus the probabil ity that the second 
child is a girl . Both these probabi l i t ies are 1 /2 and would sum to I rather than the 
correct 3/4. This is  because the possibility that both children are girls is included in  
each of the individual probabilities and has therefore been double-counted. 
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The additive rule for the calculation of the probability of occurrence of at least 
one of two events A and B is therefore: 

Prob (A or B or both ) = prob (A) + prob (B )  - prob (both ) 

Jn Example 14 . 1 

Prob (at least one girl) = prob ( 1 st child is girl) + prob (2nd child is girl ) 

- prob (both are girls )  

= 1 /2 + 1 /2 - 1 /4 = 3/4 

From our example, it is  also clear that an alternative formulation is: 

Prob (A or B or both) = I - prob (A doesn't occur and B doesn't occur) 

smce 

Prob (at least one girl ) = l - prob ( 1 st is not a girl and 2nd is not a girl ) 

or equivalently, l - prob (both children are boys) = 1 - 1 /4 = 3/4 

1 4 . 4  B AY E S '  R U L E  

We wil l  now introduce Bayes' rule, which i s  the basis o f  the Bayesian approach to 
statist ics, introduced in  Section 1 4.2 and described in Chapter 33 .  We saw above 
that the general rule for the probabili ty of both of two events is 

Prob (A and B) = prob (A) x prob (B given A) 

where we have written the conditional probability prob (B given that A has occurred) 
more concisely as prob (B given A). We now show how this leads to Bayes' rule for 
relating conditional probabilities. Switching A and B in the above formula gives : 

Prob (B  and A) = prob (B )  x prob (A given B )  

Since the left hand sides o f  these two equations are exactly the same, that i s  the 
probability that both A and B occur, the right hand sides of the two equations 
must be equal : 

Prob (A) x prob ( B  given A) = prob (B )  x prob (A given B )  
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Rearranging this by dividing both sides of this equation by prob (A)  gives Bayes' 
rule for relating conditional probabi l ities: 

. prob (B)  x prob (A given B)  
Prob ( B  given A)  = ----------

prob (A) 

This  allows us to derive the probability of B given that A has happened from the 
probabil i ty of A given that  B has happened . The importance of th is  wi l l  become 
clear in Chapter 33 on the Bayesian approach to statistics. Here, we wil l just 
i l lustrate the calculation with an example. 

Example 14.2 
Suppose that we know that l 0% of young girls in India are malnourished, and 
that 5% are anaemic, and that we are interested in the relationship between the 
two. Suppose that we also know that 50°/,, of anaemic girls are also malnourished. 
This means that the two conditions are not independent, since if  they were then 
only 1 0% ( not 50%) of anaemic girls would also be malnourished, the same 
proportion as t he population as a whole. However, we don't know the relationship 
the other way round, that is what percentage of malnourished girls are also 
anaemic. We can use Bayes' rule to deduce this. Writing out the probabil i t ies 
gives: 

Probabil i ty (malnourished) = 0 . 1 

Probability (anaemic) = 0.05 

Probabil ity (malnourished given anaemic) = 0 .5  

Using Bayes rule gives: 

Prob (anaemic given malnourished) 

prob (anaemic) x prob (manourished given anaemic) 
prob (malnourished) 

0 .05 x 0 .5  
= 0.25 

0 . 1 

We can thus conclude that 25%, or one quarter, of malnourished girls are also 
anaemic. 

1 4 . 5  T H E  I N D E P E N D E N C E  A S S U M PT I O N  

Standard statistical methods assume that the outcome for each i nd ividual is 
independent of t he outcome for other individuals. In  other words, i t  is  assumed 
that the probabil i ty that the outcome occurs for a particular individual in the 
sample is  unrelated to whether or not it has occurred for the other individuals. An 
example where this assumpt ion is violated is when different individuals in  the same 
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family (for example siblings) are sampled, because the outcome for an individual is 
on average more similar to that for their sibling than to the rest of the population. 
The data are then clustered, and special methods that al low for the clustering must 
be used. These are described in  Chapter 3 1 .  

1 4 . 6  P R O B A B I L I T I E S  A N D  O D D S 

In  this section, we introduce the concept of odds and examine how they relate to 
probabil ity. The odds of an event are commonly used in  betting circles. For 
example, a bookmaker may offer odds of I 0 to 1 that Arsenal Football Club 
will be champions of the Premiership this season.  This means that the bookmaker 
considers the probabi lity that Arsenal will not be champions is 1 0  t imes the 
probabil i ty that they wil l be. Most people have a better intuit ive understanding 
of probabil i ty than odds, the only common use of odds being in  gambling (see 
below). However, as we will see in  Chapters 1 6  to 2 1 ,  many of the statistical 
methods for the analysis of binary outcome variables are based on the odds of an 
event, rather than on its probabil ity. 

More formally, the odds of event A are defined as the probability that A does 
happen divided by the probabil ity that i t  does not happen: 

Odds (A) = 
prob (A happens) 

prob (A does not happen) 

prob (A) 
1 - prob (A) 

since 1 - prob (A) is the probabil ity that A does not happen . By manipula
ting this equation, i t  is also possible to express the probabil ity in  terms of the 
odds: 

Odds (A) 
Prob (A) = 

l + Odds (A) 

Thus it is  possible to derive the odds from the probabil i ty, and vice versa . 
When bookmakers offer bets they do so in terms of the odds that the 

event will not happen, since the probabil ity of this is  usually greater than 
that of the event happening. Thus, if the odds on a horse in  a race are 4 
to 1 ,  this means that the bookmaker considers the probabi l i ty of the horse 
losing to be fou r  t imes greater than the probabil ity of the horse winning. I n  
other words: 

Odd 
( 

I ) 
prob (horse loses) 4 s horse oses = . = 
prob (horse wms) 
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Table 1 4. 2  Values of the odds, for 

different values of the probabil ity. 

Probabil ity Odds 

0 0 

0.001 0.001 001 

0.005 0.005025 

0.01 0.01 01 01 

0.05 0.052632 

0.1 0. 1 1 1 1 1 1  

0.2 0.25 

0.5 1 

0.9 9 

0.95 1 9  

0.99 99 

0.995 1 99 

0.999 999 

00 

Using the equation above, it follows that prob (horse loses) = 4/( 1 + 4) = 0 .8 ,  
and the probabi l ity that i t  wins is 0 .2 .  

Table 1 4.2  shows values of the odds corresponding to di fferent values of the 
probabil i ty .  I t  can be seen that the difference between the odds and the probabil ity 
i s  small unless t he probabil i ty is greater than about 0 . 1 .  It can also be seen that 
while probabil i t ies must l ie between 0 and I ,  odds can take any value between 0 
and i nfinity (oo) .  This is a major reason why odds are commonly used in the 
statistical analysis of binary outcomes. Properties of odds are summarized in 
the box below. 

B O X  1 4 . 1  P R O P E RT I E S  O F  T H E  O D D S  

• Both prob (A)  and l - prob (A) l ie between 0 and 1 .  I t  follows t hat t he 
odds l ie between 0 (when prob (A) = 0) and oo (when prob (A) = 1 )  

• When the probabi l i ty is 0 .5 ,  the odds are 0 .5/( 1 - 0.5)  = 1 

• The odds are always bigger than the probability (since 1 - prob (A) is less 
than one) 

• Importantly :  When the probabil i ty is  small (about 0 . 1 or less), the odds are 
very close to the probabil i ty .  This is because for a small probabil i ty 
( 1  - prob (A)] So! I and so prob (A)/[ 1 - prob (A)] So! prob (A) 
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1 5 . 1  I N T R O D U C T I O N  

I n  this chapter we start by introducing the notation for binary outcome variables 
that will be used throughout the book. These are outcomes where for each 
individual in  the sample the outcome is one of two alternatives. For example, at 
the end of the study a subject may have experienced the particular disease (or 
event) of in terest (D),  or remained healthy (H). Throughout this part, we will label 
the two possible outcomes as D (d isease) or H (healthy), regardless of the actual 
categories. Examples of other outcome variables are that a patient dies (D) or 
survives (H), or that a specimen is positive (D) or negative (H). It is not necessary 
that D refers to an adverse outcome; for example, in a smoking cessation study, 
our outcome may be that a participant has (D) or has not (H )  successfu l ly quit  
smoking after 6 months. 

Of particular interest is the proportion (p) of individuals in our sample i n  
category D,  that i s  the number of  subjects who experience the event (denoted by 
d) d ivided by the total number in  the sample (denoted by n) .  The total who do not 
experience the event wil l be denoted throughout by h = n - d. 

d 
p = n 

We use this sample proportion to estimate the probability or risk (see Section 
1 4.2) that an individual in the population as a whole wil l be in  category D rather 
than H .  
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Suppose that in  a trial of a new vaccine, 23 of 1 000 children vaccinated showed 
signs of adverse reactions ( such as fever or signs of i rritability) within 24 hours of 
vaccination . The proportion exhibiting an adverse reaction was therefore: 

p = 23/ 1 000 = 0.023 or 2 . 3% 

We would then advise parents of children about to be vaccinated that the vaccine 
is associated with an estimated 2 .3% risk of adverse reactions. See Section 1 5 . 5  for 
how to calculate a confidence interval for such a proportion . 

The (unknown) probabi l ity or risk that the outcome D occurs in the population is  
denoted by 71 (Greek letter pi ; not related here to the mathematical constant 
3 . 1 4 1 59) .  Its estimation is, of course, subject to sampling variation, in exactly the 
same way as the estimation of a population mean from a sample mean, described 
in Section 4.5 .  In the fol lowing sections, we derive the sampling d istribution of a 
proportion, which i s  known as the binomial distribution, and then show how i t  
can be approximated by the normal d istribution to give a confidence interval and 
z-test for a single proportion. Finally, we define two types of proportion that are 
of particular importance in medical research; cumulative incidence ( risk) and 
prevalence. 

1 5 . 2  B I N O M I A L  D I S T R I B U T I O N :  T H E  S A M P L I N G  D I S T R I B U T I O N  O F  A 
P R O P O R T I O N  

The sampling distribution of a proportion is called the binomial distribution and can 
be calculated from the sample size, n, and the population proportion, 71, as shown 
in Example 1 5 .2 .  71 is the probabi l ity that the outcome for any one ind ividual is D. 

Example 15.2 
A man and woman each with sickle cel l  t rait (AS; that is, heterozygous for the 
sickle cel l  [SJ and normal [A] haemoglobin genes) have four children. What is  the 
probabil i ty that none, one, two, three, or four of the children have sickle cell 
disease (SS)? 

For each child the probability of being SS is the probabil ity of having inherited 
the S gene from each parent, which is 0 .5  x 0.5 = 0.25 by the mult ipl icative rule of 
p robabi l ities (see Section 1 4. 3 ) .  The probability of not being SS ( i . e .  of being AS or 
AA) is  therefore 0.75. We shall call being SS category D and not being SS category 
H ,  so 71 = 0.25 .  

The probabil i ty that  none of the children is SS ( i .e .  d = 0) i s  0 .75 x 

0.75 x 0 .75 x 0.75 = 0 .754 = 0 . 3 1 64 (0 . 754 means 0.75 mult iplied together four 
times) .  This is by the mult iplicative rule of probabil it ies. 

The probabi l ity that exactly one child is SS ( i .e .  d = I )  is the probability that 
(first child SS; second, third, fourth not SS) or (second child SS; first, third, fourth 
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not SS) or ( third child SS; first, second, fourth not SS) or (fourth child SS; first, 
second, third not SS) .  Each of these four possibil ities has probabil i ty 0.25 x 0.753 
(multiplicative rule)  and since they cannot occur together the probabil i ty of one or 
other of them occurring is 4 x 0.25 x 0.753 = 0.42 1 9, by the additive rule of 
probabil it ies (see Section 1 4.3 ) .  

Tab le  1 5. 1  Calculation o f  the probabilities o f  the possible numbers o f  children who have inherited sickle cell 
(SS) disease, in a family of four children where both parents have the sickle cell trait. (The probabil ity that an 

individual child inherits sickle cell disease is 0.25.) 

No. of children 

With SS Without SS 

(d) (h) 

0 4 

1 3 

2 2 

3 1 

4 0 

No. of ways in which 

combination could occur 

4 

6 

4 

1 

Probabil ity 

b d _ n! _ff _ n-d Pro ( events) - d!(n _ d)!
" (1 - 11 ) 

1 x 1 x 0.754 = 0.31 64 

4 x 0.25 x 0. 753 = 0.42 1 9 

6 x 0.252 x 0. 752 = 0.21 09 

4 x 0253 x 0 .  75 = 0.0469 

1 x 0.254 x 1 = 0.0039 

Total = 1 .0000 

In similar fashion, one can calculate the probability that exactly two, three, or 
four children are SS by working out in each case the different possible arrange
ments within the family and adding together their probabil ities. This gives the 
probabil i t ies shown in  Table 1 5 . 1 .  Note that the sum of these probabil i ties i s  1 ,  
which i t  has to be as one of the alternatives must occur. 

The probabi l i ties are also i l lustrated as a probabil ity distribution in Figure 1 5 . 1 .  
This is the binomial probability distribution for 7r = 0.25 and n = 4. 

1 .0 

.f' 
..0 

0 . 5  co ..0 
2 0... 

0 

B i n o m i a l  d istribut io n :  n = 4  
rr = 0.25  

I I 
0 2 3 4 

No. of c h i l d ren i n  fa m i ly of fou r  
with sickle cel l  disease 

Fig.  1 5 . 1  Probabil ity distribution of the number of children in a family of four with sickle ce l l  disease where 

both parents have the sickle cell trait. The probability that a child inherits sickle cell disease is 0.25. 
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General formula for binomial probabil ities 

The general formula for the probabil ity of getting exactly d events in a sample of n 
individuals when the probability of D for each individual is 7T is :  

( ) n !  c1 11-d Prob d events = 
l l (  _ /) I 7T ( l - 7r) c;, .  n c;, • 

The first part of the formula represents the number of possible ways in which d 
events could be observed in a sample of size n, and the second part equals the 
probabil i ty of each of these ways. 
• The exclamation mark. denotes the factorial of the number and means all the 

integers from the number down to 1 multipl ied together. (O! is defined to equal I . ) 
• 1Td means 7T mult ip l ied together d t imes or, in mathematical terminology, 7T to 

the power d. Any number to the power zero is  defined to equal 1 .  
• Note that when 7T equals 0.5 ,  ( I  - 7r) also equals 0 .5  and the second part of the 

formula simplifies to 0.5'' . 
The interested reader may like to practise the application of the above formula by 
checking the calculations presented in Table 1 5 . 1 .  For example, applying the 
formula in  the above example to calculate the probabi l ity that exactly two out 
of the four children are SS gives: 

Prob (2  SS children) 
4! ? 4- ? 

2 ! (  4 - 2) ! 0.25- ( 1 - 0 .25 )  -

= 4 x 3 x 2 x 1 0.252(0 .75 )2 2 x l x 2 x l 
= 6 x 0.252 x 0 .752 = 0 .2 1 09 

The first part of the formula may be more easily calculated using the fol lowing 
expression, where (n - d ) !  has been cancelled into n! 

n! n x (n - 1 )  x (n - 2) x . . .  x (n - d + 1 )  
d!(n - d)! d x (d - l )  x . . .  3 x 2 x 1 

For example, i f  n = 1 8  and d = 5, (n - d + I ) = 1 8  - 5 + 1 = 1 4  and the expres
sion equals: 

1 8  x 1 7 x 1 6  x 1 5  x 14 1 028 1 60 
-------- = = 8568 5 x 4 x 3 x 2 x I 1 20 
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Shape of the binomial distribution 

Figure 1 5 .2 shows examples of the binomial distribution for various values 
of 7r and n. These distributions have been i l lustrated for d, the number of 
events in the sample, although they apply equally to p, the proportion of 
events. For example, when the sample size, n, equals 5 ,  the possible values 
for d are 0, I ,  2, 3, 4 or 5,  and the horizontal axis has been labelled accordingly. 
The corresponding proportions are 0, 0.2, 0.4, 0.6, 0.8 and 1 respectively .  Relabel
l ing the horizontal axis with these values would give the binomial distribution for 
p. Note that, although p is a fraction, its sampl ing distribution is d iscrete and not 
continuous, since i t  may take only a l imited number of values for any given sample 
size. 

1T = 0.3 1T = 0. 5  TI = 0. 7  
0 . 4  0 .4 

.£ 0.3 

illL 
0.3 

i'i 
0 . 2  n = 5  co 0.2 .s::J 

e 
0 . 1  0.... 0 . 1  

0 0 
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

0 .2 0 .2  

?: 
n = 20 

i'i 
0 . 1  co 0 . 1  .s::J 

e 0.... 

0 0 
0 5 1 0  1 5  20 0 5 1 0  1 5  20 0 5 1 0  1 5  20 

.£ 0 . 1  0 . 1  
.s::J 

n = 40 � 
e 0.... 

0 0 
0 1 0  20 30 40 0 1 0  20 30 40 0 1 0  20 30 40 

Fig. 1 5. 2  Binomial distribution for various values of " and n. The horizontal scale in each diagram shows 

values of d. 
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1 5 . 3  S T A N D A R D  E R R O R  O F  A P R O P O R T I O N  

Since the binomial distribution i s  the sampling distribution for the number (or 
proport ion)  of D's, its mean equals the population mean and its standard deviation 
represents the standard error, wh ich measures how closely the sample value 
estimates the population value. The population means and standard errors can 
be calculated from the binomial probabil ities; the results are given in Table 1 5 . 2  
for the  number, proportion and percentage of  events. The percentage i s ,  of course, 
just the proportion mul tipl ied by I 00. 

Tabl e  1 5. 2  Population mean and standard error for the number, proportion and percentage of D 's  in  a sample. 

Observed value Population mean Standard error 

Number of events d /17r J[mr( 1  - 7r)] 

Proportion of events p = d/n 1T J[7r( 1 - 1T)/n] 

Percentage of events 1 00p 1 007T 1 00./[7r( 1 - 1T)/n] 

1 5 . 4  N O R M A L  A P P R O X I M AT I O N  TO T H E  B I N O M I A L  D I S T R I B U T I O N  

As the sample size /1 increases the binomial distribution becomes very close t o  a 
normal distribution ( see Figure 1 5 .2) ,  and this can be used to calculate confidence 
intervals and carry out hypothesis tests as described in the fol lowing sections. In  
fact the normal distribution can be  used as  a reasonable approximation to the 
binomial distribution if  both 11ri and /1 - 11ri are I 0 or more. This approximating 
normal d istribution has the same mean and standard error as the binomial 
distribution ( see Table 1 5 .2 ) .  

1 5 . 5  C O N F I D E N C E  I N T E R V A L  FOR A S I N G L E P R O P O R T I O N  U S I N G  T H E  
N O R M A L  D I S T R I B U T I O N  

The calculation and in terpretation o f  confidence intervals was explained i n  detail in 
Chapters 6 and 8 .  Using the binomial distribution to derive a confidence interval for 
a proport ion is complicated . Methods that do this are known as exact methods and 
are described in more detail by Altman et al. (2000), and by Clayton and Hi l ls  
( 1 993) .  The usual approach is to use the approximation to the normal distribution 
with ri estimated by p, the standard error estimated by J[p( I - p )/11] ( see Table 
1 5 .2) ,  and methods similar to those described in Chapter 6 for means. This is  valid 
providing that both np and n - np are I 0 or more, so that the normal approx
imation to the binomial distribution is sufficiently good. The con fidence interval is: 

CI  = p - (z' x s .e . )  to p + (z' x s .e . ), 

s .e . = y' [p( l - p)/n] 
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where z' is the appropriate percentage point of the standard normal d istribution . 
For example, for a 95% confidence in terval, z' 

= 1 . 96. 

Example 15.3 
In September 200 1 a survey of smoking habits was conducted i n  a sample of 1 000 
teenagers aged 1 5- 1 6, selected at random from all 1 5- 1 6 year-olds l iving in  B ir
mingham, UK.  A total of 1 23 reported that they were current smokers. Thus the 
proportion of current smokers is: 

p = 1 23/ 1 000 = 0. 1 23 = 1 2 .3% 

The standard error of p is estimated by J[p( l - p)/n] = J0. 1 23 x 0.877 / 1 000 = 
0.0 1 04. Thus the 95% confidence in terval is :  

95% CI = 0. 1 23 - ( l .96 x 0.0 1 04) to 0 . 1 23 + ( 1 .96 x 0.0 1 04) = 0. 1 03 to 0 . 1 43 

With 95% confidence, i n  September 200 1 the proportion of 1 5- 1 6  year-olds l iving 
in  B irmingham who smoked was between 0. 1 03 and 0 . 1 43 (or equivalently, 
between 1 0 .3% and 1 4. 3%) . 

1 5 . 6  z- T E S T  T H AT T H E  P O P U LA T I O N  P R O P O RT I O N  H A S  A 
P A R T I C U L A R  V A L U E  

The approximating normal distribution (to the binomial sampling distribution) 
can also be used in  a z-test of the null hypothesis that the population proportion 
equals a particular value, w. This is  valid provided that both nw and n - nw are 
greater than or equal to 1 0. The z-test compares the size of the difference between 
the sample proportion and the hypothesized value, with the standard error. The 
formula is : 

p - 7r  p - 7r  z - -- - ------ s.e. (p) 
-

J[w( l - 7r)/n] 

I n  exactly the same way as explained in Chapter 8, we then derive a P-value, which 
measures the strength of the evidence against the null hypothesis that p = w. 

Example 1 5.3 (continued) 
I n  1 998 the U K  Government announced a target of reducing smoking among 
children from the national average of 1 3% to 9% or less by the year 20 1 0, with a 
fall to 1 1  % by the year 2005.  Is there evidence that the proport ion of 1 5- 1 6  year-
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old smokers in Birmingham at the time of our survey in 200 1 was below the 
national average of 1 3% at the time the target was set? 

The null  hypothesis is that the population proportion is equal to 0. 1 3  ( 1 3%). 
The sampling d istribution for the number of smokers, i f  the null hypothesis is true, 
is  therefore a binomial distribution with 11 = 0. 1 3  and n = 1 000. The standard 
error of p under the nul l  hypothesis is : 

; 0 . 1 23 - 0 . 1 3  
s .e . (11) = v [0 . 1 3 ( 1 - 0. 1 3 )/ 1 000] = 0. 1 06. Therefore z = 0 0 = -0.658 . 1  6 

The corresponding P-va lue is 0 .5 1 .  There is no evidence that the proportion of 
teenage smokers in  Birmingham in September 200 1 was lower than the national 
I 998 levels. 

Continuity correction 

When either 1111 or n - n11 are below 1 0, but both are 5 or more, the accuracy of 
hypothesis tests based on the normal approximation can be improved by the 
introduction of a continuity correction (see also Section 1 7 .2) .  The continuity cor
rection adjusts the numerator of the test statistic so that there is  a closer fit between 
the P-value based on the z-test and the P-value based on an exact calculation using 
the binomial probabil it ies. This is i l lustrated in Figure 1 5 . 3  and Table 1 5 .3 ,  which 
show that incorporating a continuity correction and calculating the area under the 
normal curve above 8.5 gives a close approximation to the exact binomial probabil
ity of observing 9 events or more. In  contrast the area of the normal curve above 9 

0.3 

0.2 >-:t: 
.n "' .n 0 
0:: 

0 . 1 

0 
0 2 3 4 5 6 7 8 9 1 0  1 1  1 2  

Number of events 

Fig. 1 5 .3  Comparison of the binomial distribution (n = 1 2, 7r = 0 .5) with the approximating normal 

distribution to i l l ustrate the need for a continu ity correction for small n. This shows that the area under 

the normal curve above 8.5 is closer to the shaded exact probabilities than the area above 9. 
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Table1 5.3 Comparisons of the different methods of calculating the probabil ity of observing 9 or 

more events, when n = 1 2  and 7f = 0.5 .  

Probability of  observing 9 or more events, when n = 1 2  and 7r = 0.5  

Calcu lated using binomial probabil ities: 

9 events 

1 0  events 

1 1  events 

1 2  events 

Total of 9+ events 

Using approximating normal distribution: 

Based on area above 9 

220 x 0.5 1 2  = 0.0537 

66 x 0.51 2  = 0.01 61 

1 2  x 0.51 2  = 0.0029 

1 x 0.5 1 2  = 0.0002 

0.0729 

With continuity correction, based on area above 8.5 

0.041 8 

0.0749 

is not a good approximation. More details are not included here since continuity 
corrections are not often used in modern medical statistics. This is  because they 
can't be extended to the regression models, described in Chapter 1 9  and later in 
the book, which are used to examine the effects of a number of exposure variables 
on a binary outcome. 

1 5 . 7  I N C I D E N C E  A N D  P R E V A L E N C E  

We now define two particular types o f  proportion that are o f  particular relevance 
in medical research .  These are the cumulative incidence (or risk) of a disease event, 
and the prevalence of a disease. 

Cumulative incidence (risk) 

The cumulative incidence or risk, r, of a disease event is the probabi l i ty that 
the d isease event occurs during a specified period of time. I t  is estimated by the 
number of new cases of a disease during a specified period of time d ivided 
by the number of persons initially disease-free and therefore at risk of contracting 
the disease. 

R
. 

k _ 1 . . .
d _

number of new cases of d isease in period 
is - cumu atJve mc1 ence -

b 
. . . 11 d

. f num er irntia y 1sease- ree 

For example, we might be interested in :  
• the r isk of death in  the five years following d iagnosis with prostate cancer; 
• the risk of vertical transmission of HIV during pregnancy or childbirth in H I Y

infected mothers given antiretroviral therapy during pregnancy. 
Risks usually refer to adverse (undesirable) events, though this is  not essential . 
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Suppose we study 5000 individuals aged 45 to 54, with no existing cardiovascular 
disease. Ten years later, the same individuals are fol lowed up and we find that 1 47 
have died from or have developed coronary heart disease. Then the risk of 
coronary heart disease is the proportion of individuals who developed the disease: 
1 47 /5000 = 0.0294, or 2.94%. 

Prevalence 

I n  contrast, the prevalence represents the burden of d isease at a particular time, 
rather than the chance of future disease. It is based on the total number of existing 
cases among the whole population, and represents the probabil i ty that any one 
individual in  the population is currently suffering from the d isease. 

P I number of people with the disease at particular point i n  t ime 
reva ence = . 

total populat10n 

For example, we might be interested in :  
• the prevalence of schistosomiasis among villagers l iving on the shore of Lake 

Malawi; 
• the prevalence of chronic lower back pain among refuse collectors in B ristol, 

UK.  

Example 1 5. 5  
Suppose we study a sample o f  2000 individuals aged I 5 t o  50, registered with a 
particular general practice. Of these, I 38 are being treated for asthma. Then the 
prevalence of d iagnosed asthma in the practice population is the proportion of the 
sample with asthma: 1 38/2000 = 0.069, or 6.9%. 

Both cumulative i ncidence and prevalence are usually expressed as a percentage 
or, when small, as per 1 000 population or per I 0 000 or I 00 000 population. I n  
Chapter 2 2  we define the incidence rate, the measure used i n  longitudinal studies 
with variable lengths of follow up. 



C HA P T E R  1 6  

Comparing two proportions 

1 6. 1  Introduction Standard error and confidence 
1 6.2 The 2 x 2 table, and measures of interval for ratio measures 

exposure effect Test of the nul l  hypothesis 
1 6.3 Risk d ifferences Further ana lyses of risk ratios 

Sampling distribution of the 1 6.6 Odds ratios 

difference between two proportions Comparison of odds ratios and 
Test that the difference between two risk ratios 
proportions is zero Rationale for the use of odds ratios 

1 6.4 Risk ratios 1 6.7 Odds ratios: confidence intervals 

Interpreting the risk ratio and hypothesis tests 

Relationship between risk ratios and Confidence interval for the odds and 
risk differences the odds ratio 
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1 6 . 1  I N T R O D U C T I O N  

I n  Chapter 1 5  we saw how the sampling distribution o f  a proportion can be 
approximated by the normal distribution to give a confidence interval and z-test 
for a single proportion. I n  this chapter we deal with the more common situation 
where we wish to compare the occurrence of a binary outcome variable between 
two exposure (or treatment) groups. We will use the same notation for these two 
groups as was introduced in Chapter 7 for the comparison of two means. Group 
1 denotes ind ividuals exposed to a risk factor, and group 0 denotes those unex
posed. In clinical trials, group 1 denotes the treatment group, and group 0 the 
control, or placebo group (a  placebo i s  a prepara tion made to be as similar as 
possible to the treatment in  al l respects, but with no effective action) .  For example, 
• In a study of the effects of bacterial infection during pregnancy, we may wish to 

compare the risk of premature delivery for babies born to women infected 
during the first trimester (the exposed group, I )  with that for babies born to 
uninfected women ( the unexposed group, 0) .  

• I n  a trial of a new influenza vaccine, the comparison of interest might be the 
proportion of participants who succumbed to influenza during t he winter 
season in the vaccine group (the treatment group, 1 ) , compared to the propor
tion in the placebo group (the control group, 0) .  

We start by showing how the data can be displayed in a 2 x 2 table, with individ
uals in the sample classified according to whether they experienced the disease 
outcome (or not), and according to whether they were exposed (or not) .  We then 
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explain three different measures for comparing the outcome between the two 
groups: the difference in the two proportions, the risk ratio and the odds ratio .  
We describe how to calculate a confidence interval and carry out a hypothesis test 
for each of them, and outl ine their relative advantages and disadvantages. 

1 6 . 2  T H E  2 x 2 T A B L E , A N D  M EA S U R E S  O F  E X P O S U R E  E F F E C T  

I n  Section 3 .4, we described how the relationship between two categorical vari
ables can be examined by cross-tabulating them in a contingency table. We noted 
that a useful convention is for the rows of the table to correspond to the exposure 
values and the columns to the outcomes. To compare the occurrence of a binary 
outcome variable between two exposure groups, we therefore display the data in a 
2 x 2 table. Table 1 6 . 1  shows the notation that we will use for the number of 
individuals in  each group. As introduced in the last chapter, we use letter d to 
denote t he number of subjects who experience the outcome event, h to denote the 
number of subjects who do not experience the outcome event, and n for the total 
number in  the sample. I n  addition, we use the subscripts I and 0 to denote the 
exposed and unexposed groups respectively. 

As explained in  Section 3 .4, i t  is recommended that the table also shows the 
proportion (or percentage) in each outcome category, within each of the exposure 
groups. Thus, i f  the exposure is  the row variable (as here) then row percent
ages should be presented, while if i t  is  the column variable then column percent
ages should be presented. Following the notation introduced in Chapter 1 5 , the 
overall proportion is denoted by p = d /n, and the proportions in the exposed and 
unexposed groups are denoted by Pt = d1 /n 1  and Po = do/no, respectively. 

Example 1 6. 1 
Consider the following results from an innuenza vaccine trial carried out during 
an epidemic. Of 460 adults who took part, 240 received innuenza vaccination and 
220 placebo vaccination. Overa l l  I 00 people contracted innuenza, of whom 20 
were in  the vaccine group and 80 in  the placebo group.  We start by displaying the 
results of the t rial in  a 2 x 2 table (Table 1 6.2) .  In  Table 1 6 .2  the exposure is 
vaccination (the row variable) and the outcome is whether the subject cont racts 
innuenza (the column variable) . We therefore also include ro 1 v  percentages in  the 

Table 1 6 . 1  Notation to denote the number of individuals in each group for the 2 x 2 
table comparing a binary outcome variable between two exposure groups. 

Outcome 

Experienced event Did not experience event: 

Exposure D (Disease) H (Healthy) Total 

Group 1 (exposed) d, h ,  n ,  
Group O (unexposed) do ho no 

Total d h n 
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Tabl e  1 6.2  2 x 2 table showing results from an influenza vaccine trial. 

Vaccine 

Placebo 

Total 

Yes 

20 (8.3%) 

80 (36.4%) 

1 00 (21 .7%) 

Influenza 

No 

220 (91 .7%) 

1 40 (63.6%) 

360 (78.3%) 

Total 

240 

220 

460 

table. Overall ,  2 1 . 7% of subjects contracted influenza. We can see that the per
centage contracting influenza was much lower in the vaccine group (8 . 3%), than i n  
t he  placebo group (36.4%) . We can use these data to answer the following related 
questions. 
1 How effective was the vaccine in  prevent ing influenza i n  our trial? The size of 

this effect can be measured in  three different ways: 
(a) The difference between the risks of contracting i nfluenza in the vaccine 

group compared to the placebo group. 
(b) The ratio of the risks of contracting influenza in the vaccine group com

pared to the placebo group. This is also known as the relative risk. 

(c) The ratio of the odds of contracting (to not contracting) influenza in the 
vaccine group, compared to the placebo group. 

2 What does the effect of the vaccine i n  our trial tell us about the size of its effect 
i n  preventing infl uenza more general ly in the population? This is addressed by 
calculating a confidence interval for the size of the effect . 

3 Do the data provide evidence that the vaccine actually affects the risk of 
contracting influenza, or might the observed difference between the two groups 
have arisen by chance? In other words, are the data consistent with there being 
no effect of the vaccine? We address this by carrying out a hypothesis (or 
significance) test to give a P-value, which is the probabil i ty of a difference 
between the two groups at least as large as that in our sample, if there was no 
effect of the vaccine in the population. 

The use of confidence intervals and P-values to interpret the results of statistical 
analyses is  discussed in detail in  Chapter 8 ,  and readers may wish to refer to that 
chapter at this point .  

The three different measures for comparing a binary outcome between two 
exposure (or treatment) groups are summarized in  Table 1 6. 3 ,  together with the 
results for  the influenza vaccine trial. All three measures indicate a benefit of the 
vaccine .  The risk difference is -0.28 1 ,  meaning that the absolute risk of contract
ing influenza was 0.28 1 lower in  the vaccine group compared to the placebo group .  
The r i sk ratio equals 0.228, meaning that the risk of contracting influenza i n  the 
vaccine group was only 22.8% of the risk in the placebo group.  Equivalently, we 
could say the vaccine prevented 77.2% ( 1 00 - 22.8%) of influenza cases. This is 
called the vaccine efficacy; it is discussed in more detail in Chapter 37 .  The odds 
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Table 1 6.3 Three different measures for comparing a binary outcome between two exposure (or 

treatment) groups, together with the results for the vaccine trial data in Table 1 6.2 .  

Measure of comparison 

Risk difference 

Risk ratio (relative risk) 

Odds ratio 

Formula 

P1 - Po 

Pi /Po 

d1 /h, d, x ho 

do/ho do x h, 

Result for influenza vaccine trial 

0.083 - 0.364 = -0.281 

0 083/0364 = 0.228 

20/220 20 x 1 40 

80/1 40 = 80 x 220 
= 0 · 1 59 

rat io in the trial was 0.292 meaning that the odds of contracting i nfluenza in the 
vaccine group were 29.2°/c1 of the odds in the placebo group. 

The fol lowing sect ions describe how to calculate confidence in tervals and carry 
out hypothesis tests for each of these three measures. They also discuss their 
relat ive advantages and disadvantages. When to use which measure is also dis
cussed in Chapter 37 ( 'Measures of association and impact') .  

1 6 . 3  R I S K  D I F F E R E N C E S  

We will start with the first of the three measures of effect, the difference between 
the two proportions. From now on we wil l refer to this as a risk difference, though 
the methods apply to any type of proportion . We will see how to derive a 
confidence interval for the difference, and carry out a test of the nul l  hypothesis 
that there is no difference between the proportions in the population from which 
the sample was drawn . As in the case of a single proportion we wil l  use methods 
based on the normal approximation to the sampling d istribution of the two 
proportions. These will be i l lustrated in the context of the influenza vaccine trial 
described in Example 1 6 . l  above. 

Sampling distribution of the difference between two proportions 

Before we can construct a confidence interval for the difference between two 
proportions, or carry out the related hypothesis test, we need to know the sampling 
distribution of the difference. The difference, p1 - po , between the proport ions in 
the exposed and unexposed groups in our sample provides an estimate of the 
underlying difference, 7<1 - 7fo , between the exposed and unexposed groups in  the 
population. It is of course subject to sampling variation, so that a different sample 
from the same population would give a different value of p1 - p0 . Note that :  
1 The normal distribution is a reasonable approximation to the sampling distri

bution of the difference p1 - po, provided n 1p 1 , n 1  - n 1p 1 ,  nopo and no - nopo 
are each greater than 1 0, and will improve as these numbers get larger. 

2 The mean of this sampling d istribution is simply the difference between the two 
population means, 71 1 - 7<0 .  

3 The standard error o f  p 1  - po i s  based o n  a combination o f  the standard errors 
of the individual proportions: 
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s .e . (p 1  - Po) = V[P1  ( 1  - ]J 1 )/n 1 + po( l  - Po)/no] = J[s .e . ( p 1 )2 + s .e .( po)2 ] 

The confidence interval for the difference between two proportions is given by: 

CI = ( p 1  - po) - z' x s .e . (p 1  - po) to (p 1  - po) + z' x s .e . (p 1  - po) 

where z' is the appropriate percentage point of the normal distribution . 

Example 1 6. 1  (continued) 
The difference in proportions between the vaccine and placebo groups is 0.083-
0.364 = -0.28 1 .  Its standard error is :  

s .e . (p 1  - Po) = v[0.083 ( 1  - 0.083)/240 + 0.364( 1 - 0.364)/220] = 0 .037 

and so the approximate 95% confidence interval for this reduction is :  

95% CI = -0.28 1 - ( l .96 x 0.037) to - 0.28 1 + ( 1 .96 x 0.037) 
= -0.353 to - 0.208 

That is, we are 95% confident that in the population the vaccine would reduce the 
risk of contracting infl uenza by between 0.208 and 0.353 .  

Test that the difference between two proportions is zero 

The normal test to compare two sample proportions is based on:  

/JI - po z = ___:c_---=. __ 

s. e. (p 1 - po) 

The standard error used in the test is different to that used in the confidence interval 
because it is calculated assuming that the null hypothesis is  true ( i .e .  that 
11 1  = 110 = 11). Under the null hypothesis that the population proportions are equal :  

s .e . (p 1  - Po) = v[11( l  - 11)( 1 /11 1 + I /no)] 

11 i s  estimated by the overall proportion in  both samples, that is  by: 

do + d1 d p = --- = -no + n1 n 
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The formula for the z-test is therefore: 

P 1 - po z = ���������-y'[p( l - p)( l /n1 + 1 /no) ]  

This test  is a val id approximation provided that either n1 + no is greater than 40 or 
n 1p, n1 - n ip, n2p and n2 - n2p are all 10 or more. I f  this condition is not satisfied, 
but n ip, n i - n ip, n2p and n2 - n2p are al l  S or more, then a modified version of the 
z-test incorporating a continuity correction, or the equivalent chi-squared test with a 
continuity correction, can be used (see Section 1 7 .2 ) .  I f  none of these conditions are 
satisfied, the exact test described in Section 1 7 .3  should be used . 

Example 1 6. 1  (continued) 
The overall proportion that contracted inOuenza was 0.2 1 7  or 2 1 .7%. Therefore: 

z = (0 .083 - 0. 364) = -0.28 1 = -7.299 y'[0 .2 1 7( 1  - 0.2 1 7) ( 1 /240 + 1 /220)] 0 .0385 

The corresponding P-value is < 0.000 I .  Thus there is strong evidence that there 
was a reduction in the risk of contracting inOuenza fol lowing vaccination with the 
inOuenza vaccine. 

1 6 . 4  R I S K  R AT I O S  

We now turn to the second measure of effect introduced i n  Section 1 6 .2, the 
ratio of the two proportions. We will refer to this as the risk ratio, although 
the methods apply to ratios of any proportions, and not just those that estimate 
risks. The risk ratio i s  often abbreviated to RR, and is also known as the relative 

risk . 

Example 1 6.2 

R R = !!..!_ = di /n i 
Po do/no 

Table 1 6 .4 shows hypothetical data from a study to i nvestigate the association 
between smoking and lung cancer. 30 000 smokers and 60 000 non-smokers 
were fol lowed for a year, during which time 39 of the smokers and 6 of the 
non-smokers developed l ung cancer, giving risks of 0. 1 3% and 0 .0 1  % respectively. 
Thus the risk of l ung cancer was considerably higher among smokers than non
smokers. 
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Table 1 6.4 Hypothetical data from a cohort study to investigate the association between smoking and lung cancer. 

The calculations of risk ratio (RR) and risk difference are il lustrated. 

Lung cancer No lung cancer Total Risk 

Smokers 39 

(exposed) 

Non-smokers 6 

(unexposed) 

Total 45 

The risk ratio is: 

29 961 

59 994 

89 955 

30 000 p, - 39/30 000 = 0.001 3 (0. 1 3%)  

60  000 Po - 6/60 000 = 0.0001 (0.01 %) 

90 000 

Risk difference = 0 . 1 3%- 0.0 1 %  = 0 . 1 2% 

Risk ratio = 0.001 3/0 0001 = 1 3  

RR = � = 
0.00 1 3  

= 1 3  
Po 0.000 1 

Interpreting the risk ratio 

In an epidemiological study, comparing an exposed group with an unexposed, the 
risk ratio is a good in icator of the strength of the association between the 
exposure and the disease outcome. It equals: 

R
. 

k 
. 

(RR)  
risk in exposed group 

1s ratio = -----=----=----� 
risk in unexposed group 

In  a clinical tried to assess the impact of a new treatment, procedure or preventive 
intervention on d isease outcome or occurrence, the risk ratio equals: 

R
. 

k . . 
(RR)  

_ risk i n  treatment group 
1s 1 at10 - . . 

1 nsk 111 contro group 

A risk ratio of I occurs when the risks are the same in the two groups and is 
equivalent to no association between the risk factor and the disease. A risk ratio 
greater than I occurs when the risk of the outcome is higher among those exposed 
to the factor (or treatment) than among the non-exposed, as in Example 1 6 .2  
above, wi th exposed referring to smoking. A risk ratio less than I occurs when the 
risk is  lower among those exposed, suggest ing that the factor (or treatment )  may 
be protective. An example is  the reduced risk of infant death observed among 
infants that are breast-fed compared to those that are not .  The further the risk 
ratio is  from 1 ,  the stronger the association between exposure (or treatment) and 
oulcome. Note that a risk ratio is always a posit ive number. 

Relationship between risk ratios and risk differences 

The risk ratio is more commonly used to measure of the strength of an association 
than is the difference in risks. This is because the amount by which an exposure 
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( risk factor) multiplies the risk of an event is interpretable regardless of the size of 
the risk . For example, suppose we followed the population in Example 1 6 .2  above 
for two years instead of one, and therefore observed exactly double the number 
of events in  each group (here we are ignoring the small number of individuals lost 
to fol low-up because they died in the fi rst year) .  The risks are now 0 .26% in 
smokers and 0 .02% in non-smokers. The risk ratio is 0.26/0 .02 = 1 3 ; exactly 
as before. However, the risk difference is now 0.26 - 0.02% = 0.24%, double 
that observed when there was only one year's follow-up. The use and i nterpret
ation of rat io and difference measures of the size of exposure effects is d iscussed in  
Chapter 37 .  

1 6 . 5  R I S K  R AT I O S :  C O N F I D E N C E  I N T E R V A L S  A N D  H Y P O T H E S I S  
T E S T S  

Standard error and confidence interval for ratio measures 

Unti l  now, we have followed exactly the same procedure whenever we wish to 
calculate a confidence interval .  We derive the standard error (s .e . )  of the quantity, 
q, in  which we are interested, and determine the multiplier Za corresponding to the 
appropriate percentage point of the sampling distribution: 

Cl = q - Z a  x s.e. to q + Z a  x s.e 

When the sampling d istribution is normal, Z a  is 1 . 96 for a 95% confidence interval 
and: 

95% CI = q - 1 .96 x s .e .  to q + 1 .96 x s.e . 

For ratio measures such as risk ratios, this can lead to problems when the 
standard error is large and q is close to zero, because the lower limit of 
the confidence interval may come out negative despite the fact that the risk ratio 
is always positive. To overcome this problem, we adopt the fol lowing proced
ure :  

1 Calculate the logarithm of the r isk ratio, and i ts  standard error. The formula for 
this standard error is derived using the delta method (see Box 1 6 . 1  ), and is :  

s .e . ( log RR)  = j [ 1 /d1 - 1 /n1 + I /do - I /no] 

Note that s .e . ( log RR)  should be interpreted as 'standard error of the log RR' ,  
and that  thro ughout th i s  book, a l l  logs are to the base e (natura l  logarithms) 
unless explicit ly denoted by log 1 0 as being logs to the base 1 0. See Section 1 3 . 1  
for an explanation of logarithms and the exponential function. 

2 Derive a confidence interval for the log risk ratio in the usual way: 
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95% CI ( log RR) = log RR - 1 .96 x s.e.( log RR)  to log R R +  1 .96 x s .e . (  log RR)  

3 Antilog the confidence limits obtained, to  convert this into a confidence in terval 
for the risk ratio. 

95% CI (RR) = 

exp[ log R R  - 1 .96 x s .e . (  log RR)] to exp[ log RR + 1 .96 x s .e . (  log RR)] 

4 Use the rules of logarithms and antilogs to make this simpler. The rules are: 

Rules of logarithms: 

Rules of antilogs: 

log(a) + log(b) = log(a x b) 

log(a) - log(b) = log(a/b) 

exp(a) means e" ; i t  is the anti log (exponential) function 

exp[ log (a)] = a 

exp(a + b) = exp(a) x exp(b) 

exp(a - b) = exp(a)/ exp(b) 

Following these rules, and noting that exp(log RR) = RR, gives : 

95% CI  (RR)  = RR/exp[ l .96 x s .e . (  log RR)] to RR x exp[ 1 .96 x s .e . (  log RR)] 

The quantity exp[ l .96 x s.e .  ( log RR)] is known as an error factor (EF); it is always 
greater than l ,  because exp(x) is greater than I if  x is greater than zero . The 95% 
confidence interval can therefore be written more simply as: 

95% CI (RR) = RR/EF to RR x EF 

Putting all of this together, the formula for the 95'Yo confidence interval for the risk 

ratio is : 

95% CI (RR)= RR/EF to RR x EF, 

where EF= exp[ l .96 x s.e . ( log RR)] 

and s.e . ( log RR) = ,/[ l /d1 - l /n 1  + I /do - l /no] 
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B O X  1 6 . 1  D E R I VA T I O N  O F  T H E  F O R M U LA F O R  T H E  S TA N D A R D  
E R R O R  O F  T H E  L O G ( R I S K  R AT I O )  

This box is intended for those who wish to understand the mathematics behind the 
approximate formula for the standard error of the Log (risk ratio) used in step l of 
the procedure described in Section 1 6.5,  for calculating a confidence interval for the 
risk ratio. 

The formula was derived using the delta method. This is a technique for calculating 
the standard error of a transformed variable from the mean and standard error of the 
original untransformed variable. In this Box, we briefly outline how this method is 
used to give (a) an approximate formula for the standard error of a log transformed 
variable, and in particular (b) the formula for the standard error of a log transformed 
proportion. We then show how this result can be used to derive (c) an approximate 
formula for the standard error of the log(risk ratio) . 

(a) Deriving the formula for the standard error of a log transformed 
variable: 
The delta method uses a mathematical technique known as a Taylor series expansion 
to show that: 

log(X) '.:::'. log( �t ) + (X - µ)( log'(µ)) 

where log' (µ) denotes the first derivative of log(µ), the slope of the graph of log(µ) 
against µ,, This approximation works provided that the variance of variable X is small 
compared to its mean.  

As noted in  Section 4.3,  adding or subtracting a constant to a variable leaves i ts  
standard deviation (and variance) unaffected, and multiplying by a constant has the 
effect of  multiplying the standard deviation by that constant (or equivalently multi
plying the variance by the square of the constant). By applying these in the formula 
above, and further noting that log'(µ) = I /µ, we can deduce that 

s.e.( log(X)) '.:::'. s .e.(X) x log'(µ) = s .e.(X)/ µ 

(b) Formula for the standard error of the log(proportion): 

Recall from Section 1 5 . 3  that the mean of the sampling d istribution for a proportion 
i s  estimated by p = d/n and the standard error by yl[p( l - p)/n]. Therefore: 

J[p( l  - p)/n] s .e .( log p) '.:::'. 
d/n 

= yl[ l /d - 1 /11] 

(c) Formula for the standard error of the log(risk ratio): 

Risk ratio (RR) = f!._}_ 
Po 

Using the rules of logarithms given above the log risk ratio is given by: 

log RR = log(p1 )  - log ( po) 

Since the standard error of the difference between two variables is the square root of  
the sum of their variances (see Section 7.2), it follows that the standard error of 
log RR is given by :  

s.e.( log RR)  = J[var( log(p1 ) + var( log(po)] = J[ l /d1 - 1 /n 1 + l /do - 1 /n0] 
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Example 1 6.2 (continued) 
Consider the data presented in Table 1 6 .4, showing a risk ratio of 1 3  for the 
association between smoking and risk of lung cancer. The standard error of the 
log RR is given by : 

s .e . ( log RR)  = J[( l /39 - 1 /30000 + 1 /6 - 1 /60000)] = 0.438 

The error factor is  given by: 

EF = exp( l .96 x 0.438) = 2. 362 

The 95% confidence interval for the risk ratio is therefore: 

95% CI = ( 1 3/2.362 to 1 3  x 2.362) = 5 . 5  to 30.7 

Test of the null  hypothesis 

If the nul l  hypothesis of no difference between the risks in the two groups is true, 
then the RR = 1 and hence log RR = 0. We use the log RR and its standard error 
to derive a z statistic and test the null hypothesis in the usual way: 

log R R  Z = -----
S .e . (  log RR) 

Example 1 6.2 (continued) 
In  the smoking and lung cancer example, 

z = 2 .565/0.438 = 5 .85  

This corresponds to a P-value of  < 0.000 I .  There is therefore strong evidence 
against the nul l  hypothesis that the RR = 1 .  

Further analyses of risk ratios 

The risk ratio is a measure that is easy to interpret, and the analyses based on risk 
ratios described in this chapter are straightforward. Perhaps surprisingly, how
ever, more complicated analyses of associations between exposures and binary 
outcomes are rarely based on risk ratios. It is much more common for these to be 
based on odds ratios, as discussed in the next section, and used throughout 
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Chapters 1 7  to 2 1 .  I n  Section 20.4, we briefly describe how to conduct regression 
analyses based on risk ratios, rather than odds ratios, and why this is not usually 
the preferred method. 

1 6 . 6  O D D S  R AT I O S  

We now turn t o  the third and final measure of effect introduced i n  Section 1 6.2, 
the ratio of the odds of the outcome event in  the exposed group compared to the 
odds in  the unexposed group (or in  the case of a cl inical trial, in  the treatment 
group compared to the control group) . Recall from Section 1 4.6 that the odds of 
an outcome event D are defined as: 

Odds = 
prob(D happens) 

prob(D does not happen) 

prob( D) 

1 - prob(D )  

The odds are estimated by: 

Odds = ___!!____ = 
d/n d/n d 

l - p ( 1 - d/n) h/n h 

i .e. by the number of individuals who experience the event d ivided by the number 
who do not  experience the event. The odds ratio (often abbreviated to OR) i s  
estimated by: 

OR = _
o_d_d_s_in_e_x_p_o_se_d_g_ro_u_p_ 

odds i n  unexposed group 

d1 x ho 

do x h1  

I t  is also known as the cross-product ratio of the 2 x 2 table. 

Example 1 6.3 
Example 1 5 .5  introduced a survey of 2000 patients aged 1 5  to 50 registered with a 
particular general practice, which showed that l 38 (6 .9%) were being treated for 
asthma. Table 1 6 . 5  shows the number d iagnosed with asthma according to their 
gender. Both the prevalence (proportion with asthma) and odds of asthma in 
women and men are shown, as are their ratios. 

The odds ratio of 1 . 238 indicates that asthma is more common among women 
than men. In this example the odds ratio is close to the ratio of the prevalences; 
this is because the prevalence of asthma is low (6% to 8%). Properties of odds 
ratios are summarized in Box 1 6 .2. 
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Table 1 6.5 Hypothetical data from a survey to examine the prevalence of asthma among patients at a particular 

general practice. 

Asthma No asthma 

Women 81 995 

Men 57 867 

Total 1 38 1 862 

Total 

1 076 

924 

2000 

Prevalence 

0.0753 

0.061 7 

0.0753 
RR = 

0.061 7 
= 1 .220 

B O X  1 6 . 2  P R O P E R T I E S  O F  O D D S  R AT I O S  

Odds 

0.081 4 

0.0657 

OR = 
0.08 1 4 

= .238 
0.0657 

1 

The minimum possible value is zero, and the maximum possible value is 
infinity. 
• An odds ratio of 1 occurs when the odds, and hence the proportions, are 

the same in the two groups and is equivalent to no association between the 
exposure and the disease. 

• The odds ratio is always further away from 1 than the corresponding risk 
(or prevalence) ratio. Thus: 

if RR > I then OR > RR 

i f  RR < 1 then OR < RR 

• For a rare outcome (one in which the probability of the event not 
occurring is close to 1 )  the odds ratio is approximately equal to the risk 
ratio (since the odds are approximately equal to the risk, see Section 1 4.6 ) .  

• The odds ratio for the occurrence of disease is the reciprocal of the odds 
ratio for non-occurrence. 

• The odds ratio for exposure, that is the odds of disease in the exposed 
compared to the odds in the unexposed group, equals the odds ratio for 
disease, that is the odds of exposure in  the disease compared to the odds in 
the healthy group. (This equivalence is fundamental for the analysis of 
case- control studies.) 

Comparison of odds ratios and risk ratios 

As mentioned in Section 1 6.2 ,  both the risk difference and the risk ratio have 
immediate intuitive interpretations. It is relatively easy to explain that, for 
example, moderate smokers have twice the risk of cardiovascular disease than 
non-smokers (RR = 2) .  In contrast, interpretation of odds ratios often causes 
problems; except for gamblers, who tend to be extremely familiar with the mean
ing of odds ( see Chapter 1 4) .  
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Table 1 6.6 Values o f  t he  risk ratio when the odds ratio = 2, and the odds ratio when the risk ratio = 2, given 

different values of the risk in the unexposed group. 

Risk in  the 

Odds ratio = 2 Risk ratio = 2 

Corresponding Risk in the Corresponding 

unexposed group risk ratio unexposed group odds ratio 

0.001 

0.005 

0.01 

0.05 

0 . 1  

0.5 

0.9 

0.95 

0.99 

1 .998 

1 .99 

1 .980 

1 .905 

1 .8 1 8  

1 .333 

1 .053 

1 .026 

1 .005 

0.001 

0.005 

O.D1 

0.05 

0.1 

0.3 

0.4 

0.45 

0.5* 

2.002 

2.01 0 

2.020 

2 . 1 1 1  

2 .25 

3 .5 

6 .0 

1 1 .0 

00 

*When "o is greater than 0.5, the risk ratio must be less than 2, since 7r1 = R R  x 7ro, and probabilities 

cannot exceed I .  

A common mistake in the literature is to interpret an odds ratio as if it 
i vere a risk ratio. For rare outcomes, this is not a problem since the two are 
numerically equal (see Box 1 6.2  and Table 1 6 .6) .  However, for common 
outcomes, this is not the case; the interpretation of odds ratios diverges 
from that for risk rat ios. Table 1 6 .6  shows values of the risk ratio for an odds 
ratio of 2, and conversely the val ues of the odds ratio for a risk rat io of 2, for 
different val ues of the risk in the unexposed group. For example, it shows that 
if the risk in the exposed group is 0.5 ,  then an odds ratio of 2 is equivalent to a 
risk ratio of 1 . 3 3 .  When the outcome is common, therefore, an odds rat io of 
(for example) 2 or 5 must not be interpreted as meaning that the risk is mult ipl ied 
by 2 or 5.  

As the r isk in the unexposed group becomes larger, the maximum possible value 
of the risk ratio becomes constrained, because the maximum possible value for a 
risk is 1 .  For example, if the risk in the unexposed group is 0 .33 ,  the maximum 
possible val ue of the RR is 3. Because there is no upper limit for the odds, the OR 
is not constrained in this manner. Note that as the risk in the unexposed group 
increases the odds rat io becomes much larger than the risk ratio and, as explained 
above, should no longer be interpreted as the amount by which the risk factor 
mult ipl ies the risk of the d isease outcome. 

The constra int  on the val ue of the risk ratio can cause problems for statist ical 
analyses using risk ratios when the outcome is not rare, because i t  can mean 
that the risk ratio differs between population strata.  For example, in a low-risk 
stratum the risk of d isease might be 0.2 (20%) in the unexposed group and 0 .5  
( 50%) in  the  exposed group. The risk ratio in that stratum is therefore 
0. 5/0.2 = 2 .5 .  If the risk of disease in a high-risk stratum is 0.5 then the risk 
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rat io can be at most 2 in that stratum, since the maximum possible risk of disease 
is  1 ,  and 1 /0 . 5  = 2 .  

A further difficulty with risk ratios is that the interpretation of results may 
depend on whether the occurrence of an event, or its non-occurrence, is  considered 
as the outcome. For odds ratios this presents no problems, since: 

OR( disease) = 1 /OR( healthy) 

However no such relationship exists for risk ratios. For instance, consider 
the low-risk stratum in which the risk ratio is  0 . 5/0.2 = 2 .5 .  If the non
occurrence of disease (healthy) is considered as the outcome, then the 
risk rat io is ( I  - 0.5)/( l - 0.2) = 0.5/0.8 = 0.625. This is  not the same as 
1 /2.5 = 0.4. 

Example 1 6.4 
Consider a study in  which we monitor the risk of severe nausea during chemo
therapy for breast cancer. A new drug is compared with standard treatment .  The 
hypothetical results are shown in Table 1 6.7 .  

The risk of severe nausea is  88% in the group treated with the new drug 
and 7 1  % in the group given standard treatment ,  so the risk rat io is 
0 . 88/0 .7 1 = 1 .239, an apparently moderate increase in the prevalence of 
nausea. In contrast the odds ratio is 2.995, a much more dramatic increase. 
Note, however, that the risk ratio is constrained: it cannot be greater than 
l /0 .7 1  = 1 .408. 

Suppose now that we consider our outcome to be absence of nausea. The risk 
ratio is 0 . 1 2/0.29 = 0 .4 1 4: the proportion of patients without severe nausea has 
more than halved. The odds ratio is 0 .334: exactly the inverse of the odds ratio for 
nausea ( 1 /2.995 = 0.334). 

Table 1 6. 7 R isk of severe nausea following chemotherapy for breast cancer. 

New drug 

Standard treatment 

Number with 

severe nausea 

88 (88%) 

71 (71 %) 

Rationale for the use of odds ratios 

Number without 

severe nausea 

1 2  

29 

Total 

1 00 

1 00 

In the recent medical l i terature, the statistical analysis of binary outcomes 
is almost always based on odds ratios, even though they are less easy to 
interpret than risk ratios (or  risk differences) .  This is  for the fol lowing three 
reasons: 
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1 When the outcome is rare, the odds ratio is the same as the risk ratio. This is 
because the odds of  occurrence of a rare outcome are numerically equivalent to 
its risk . Analyses based on odds ratios therefore give the same results as analyses 
based on risk ratios. 

2 When the outcome is common, risk rat ios are constrained but odds ratios are not. 
Analyses based on risk ratios, particularly those examining the effects of more 
than one exposure variable, can cause computational problems and are difficult 
to interpret .  In  contrast, these problems do not occur in analyses based on odds 
ratios. 

3 For odds ratios, the conclusions are identical whether we consider our outcome 
as the occurrence of an event, or the absence of the event. 

Taken together, these mean that analyses of binary outcomes controlling for 
possible confounding (see Chapter 1 8 ), or which use regression modell ing (see 
Chapters 1 9  to 2 1 ) , usually report exposure effects as odds rat ios, regardless of 
whether the outcome is rare or common. 

In addition, odds ratios are the measure of choice in case-control studies. In  
fact, i t  is in th i s  context that they were first developed and used . In case-control 
studies we recruit a group of people with the disease of interest (cases) and a 
random sample of  people without the disease ( the controls ) .  The distribution of 
one or more exposures in the cases is then compared with the d istribution in the 
controls .  Because the controls usually represent an unknown fraction of the whole 
population, it is not possible to estimate the risk of disease in a case-control study, 
and so risk differences and risk ratios cannot be derived . The odds rat io can be 
used to compare cases and controls because the ratio of the odds of exposure 
(d1 / d0 ) among the diseased group compared to the odds of exposure among the 
healthy group (h 1 / h0 ) ,  i s  equivalent to the ratio of the odds of disease in exposed 
compared to unexposed: 

1 6 . 7  O D D S  R AT I O S :  C O N F I D E N C E  I N T E R V A L S  A N D  H Y P O T H E S I S  
T E S T S  

Confidence interval for the odds and the odds ratio 

We saw in Section 1 6.5  how a confidence interval for the risk rat io is derived by 
calculating a confidence interval for the log risk rat io and then converting this to a 
confidence interval for the risk ratio. Confidence intervals for the odds, and the 
odds ratio, are calculated in exactly the same way. The results are shown in Table 
1 6. 8 .  Note that s .e.( Jog OR)  should be in terpreted as 's .e .  of the log OR' .  The 
formula for s .e . ( Jog OR) is also known as Woolf's formula. 
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Table 1 6.8 Formulae for calculation of 95% confidence intervals for the odds and the odds ratio. 

Odds 

95% Cl  = odds/EF to odds x EF, 

where EF  = exp [1 .96 x s.e.( log odds)] 

and s .e . (  log odds) = J[l /d + 1 /h] 

Example 1 6.3  (continued) 

Odds ratio (OR) 

95% Cl = OR/EF to OR x EF, 

where EF  = exp[l .96 x s.e.( log OR)] 

and s.e.( log OR) = J[l /d1 + 1 /h1 + 1 /do + 1  /ho] 

Consider the data from the asthma survey presented in Table 1 6 . 5 .  The standard 
error of the log OR is given by: 

s .e . ( log OR) = J[ l /57 + 1 /867 + 1 /8 1 + 1 /995] = 0 . 1 79 

The error factor is given by: 

EF = exp( l .96 x 0 . 1 79) = 1 .420 

The 95% confidence interval for the odds ratio is therefore: 

95% CI = 1 .238/ 1 .420 to 1 .238 x 1 .420 = 0.872 to 1 . 759 

With 95% confidence, the odds ratio in  the population l ies between 0.872 and 
1 . 759. 

Test of the nul l  hypothesis 
We use the log OR and its standard error to derive a z statist ic and test the nul l  
hypothesis i n  the usual way: 

log OR 
7 - ____ _ - -

s.e . ( log OR) 

The results are identical to those produced by simple logistic regression models 
(see Chapter 1 9) . 

Example 1 6.3  (continued) 
The z statistic is given by z = 0.2 1 4/0. 1 79 = 1 . 1 94. This corresponds to a P-value 
of 0.232. There is no clear evidence against the null hypothesis that the OR = I ,  
i .e .  that the prevalence of asthma is the same in men and women. 
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Chi-squared tests for 2 x 2 and larger 
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ence between two proportions trend 

Continuity correction 

1 7 . 1  I N T R O D U C T I O N  

We saw i n  the last chapter that when both exposure and outcome variables have 
only two possible values (binary variables) the data can be d isplayed in a 2 x 2  
table. As described in  Section 3 .4, contingency tables can also be used to display 
the association between two categorical variables, one or both of which has more 
than two possible values. The categories for one variable define the rows, and the 
categories for the other variable define the columns. Ind ividuals are assigned to 
the appropriate cell of the contingency table accord ing to their values for the two 
variables. A contingency table is also used for discrete numerical variables, or for 
continuous numerical variables whose values have been grouped. These larger 
tables are general ly called r x c tables, where r denotes the number of rows in the 
table and c the number of columns. I f  the variables d isplayed are an exposure and 
an outcome, then it is usual to arrange the table with exposure as the row variable 
and outcome as the column variable, and to display percentages corresponding to 
the exposure variable. 

In this chapter, we describe how to use a chi-squared (x2) test to examine 
whether there is an association between the row variable and the column variable 
or, in other words, whether the distribution of individuals among the categories of 
one variable i s  i ndependent of their distribution among the categories of the other. 
We explain this for 2 x 2 tables, and for larger r x c tables. When the table has 
only two rows and two columns the x2 test i s  equ ivalent to the z-test for the 
difference between two proportions. We also describe the exact test for a 2 x 2 
table when the sample size is too small for the z-test or the x2 test to be val id .  
Finally, we describe the use of a x2 test for trend, for the special case where we 
have a binary outcome variable and several exposure categories, which have a 
natural order. 
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1 7 . 2  C H I - S Q U A R E D  T E S T  F O R  A 2 x 2  T A B L E  

Example 1 7. 1 
Table 1 7. 1  shows the data from the influenza vaccination trial described i n  the last 
chapter (see Example 1 6. 1 ) . Since the exposure is vaccination ( the row variable), 
the table includes row percentages. We now wish to assess the strength of the 
evidence that vaccination affected the probabil i ty of contracting influenza. 

Table 1 7  . 1  2 x 2 table showing results from an influenza vaccine trial. 

(a) Observed numbers. 

Influenza 

Yes No Total 

Vaccine 20 (8.3%) 220 (91 .7%) 240 

Placebo 80 (36.4%) 1 40 (63.6%) 220 

Total 1 00 (21 .7%) 360 (78.3%) 460 

(b) Expected numbers. 

Influenza 

Yes No Total 

Vaccine 52.2 1 87.8 240 

Placebo 47.8 1 72.2 220 

Total 1 00 360 460 

The chi-squared test compares the observed numbers in each of the four categ
ories in the contingency table with the numbers to be expected i f  there were no 
difference in efficacy between the vaccine and placebo. Overall 1 00/460 people 
contracted influenza and, if the vaccine and the placebo were equally effecti ve, one 
would expect this same proportion in each of the two groups; that is 
1 00/460 x 240 = 52 .2 in the vaccine group and 1 00/460 x 220 = 47.8 in the pla
cebo group would have contracted influenza. Similarly 360/460 x 240 = 1 87 . 8  
and 360/460 x 220 = 1 72 .2 would have escaped in fluenza. These expected 
numbers are shown in Table 1 7. 1  (b) .  They add up to the same row and column 
totals as the observed numbers. The chi-squared value is obtained by calculating 

(observed - expected)2 /expected 

for each of the four cells in the contingency table and then summing them. 

(0 - E)2 x2 
= 

� 

E , d.f .  = 1 for a 2 x 2 table 
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This is exactly the same formula as was given for the chi-squared goodness of fit 
test, which was described in Chapter 1 2. The greater the differences between the 
observed and expected numbers, the larger the value of x2 . The percentage points 
of the chi-squared distribution are given in Table AS in the Appendix. The values 
depend on the degrees of freedom, which equal 1 for a 2 x 2 table ( the number of 
rows minus 1 multipl ied by the number of columns minus 1 ) . In this example: 

(20 - 52 .2)2 (80 - 47.8)2 (220 - 1 87 .8 )2 ( 1 40 - 1 72 .2 )2 

52 .2 
+ 

47.8 
+ 

1 87 . 8  
+ 

1 72 .2  
1 9 .86 + 2 1 .69 + 5 .52 + 6.02 = 53 .09 

53 .09 is greater than 1 0.83 ,  the 0 . 1 %  point for the chi-squared distribution with 
1 degree of freedom so that the P-value for the test is < 0 .00 1 .  This means that the 
probabil ity i s  less than 0.00 1 ,  or 0 . 1 %, that such a large observed difference in the 
percentages contract ing innuenza could have arisen by chance, if  there was no real 
difference between the vaccine and the placebo. Thus there is strong evidence 
against the nul l  hypothesis of no effect of the vaccine on the probabil ity of 
contracting influenza. It is therefore concluded that the vaccine is effective. 

Quick formula 

Using our standard notat ion for a 2 x 2 table (see Table 1 6 . 1 ) , a q uicker formula 
for calculating chi-squared on a 2 x 2 table is :  

In the example, 

2 = 
460 x (20 x 1 40 - 80 x 220)2 = 53 .0 1 X I 00 x 360 x 240 x 220 

which, apart from rounding error, is the same as the value of 53 .09 obtained above. 

Relation with normal test for the difference between two proportions 

The square of the z statist ic ( normal test) for the di fference between two propor
tions and the chi-squared statistic for a 2 x 2 cont ingency table are in fact 
mathematically equivalent (x2 = z2 ), and the P-values from the two tests are 
identical .  In Example 1 6. l (Section 1 6. 3 )  the z-test gave a value of -7 .28 1 for 
the innuenza vaccine data; z2 = ( - 7.28 1 )2 = 53 .0 1  which, apart from rounding 
error, is the same as the x2 value of 53 .09 calculated above. 
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We will show below that the chi-squared test can be extended to larger contin
gency tables. Note that the percentage points given in Table AS for a chi-squared 
distribution with I degree of freedom correspond to the two-sided percentage 
points presented in Table A2 for the standard normal d istribution (see Appendix) .  
(The concepts of one- and two-sided tests do not extend to chi-squared tests with 
larger degrees of freedom as these contain multiple comparisons . )  

Continuity correction 

The chi-squared test for a 2 x 2 table can be improved by using a continuity 
correction, often called Yates' continuity correction. The formula becomes: 

x2 = I; C I O - El - o.s)2 , d.f .  = 1 E 

resulting in a smaller value for x2 . I O - El means the absolute value of 0 - E or, 
in  other words, the value of 0 - E ignoring i ts sign. 

In the example the value for x2 becomes: 

2 (32 .2  - 0.5)2 (32.2 - 0.5)2 (32 .2 - 0.5)2 (32 .2 - 0.5)2 x = 
52.2 

+ 
47 .8 

+ 
1 87 .8  

+ 
1 72 .2 

= l 9 .25 + 2 1 .02 + 5 .35 + 5 .84 = 5 1 .46, P < O .OO L 

compared to the uncorrected value of 53 .09. 
The rationale of the continuity correction is explained in Figure I 5 . 3 ,  where the 

normal and binomial distributions are superimposed. It makes l i tt le difference 
unless the total sample size is less than 40, or the expected numbers are small .  
However there is no analogue of the continuity correction for the Mantel-Haens
zel and regression analyses described later in this part of the book. When the 
expected numbers are very small , then the exact test described in  Section 1 7 . 3  
should be  used; see d iscussion on validity below. 

Validity 

When the expected numbers are very small the chi-squared test (and the equivalent 
z-test) is not a good enough approximation and the alternative exact test for a 
2 x 2 table should be used (see Section 1 7  . 3 ) .  Cochran ( 1 954) recommended the 
use of the exact test when: 
I the overall total of the table is less than 20, or 
2 the overall total is between 20 and 40 and the smal lest of the four expected 

numbers is less than 5 .  
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Thus the chi-squared test is valid when the overall total is more than 40, regardless 
of the expected values, and when the overall total is between 20 and 40 provided 
all the expected values are at least 5 .  

1 7 . 3  E X A C T  T E S T  F O R  2 x 2  T A B L E S  

The exact test t o  compare two proportions i s  needed when the numbers in  the 
2 x 2 table are very smal l ; see the discussions concerning the validity of the ::-test 
to compare two proportions (Section 1 6. 3 )  and of the chi-squared test for a 2 x 2 
table (Section 1 7 .2 above) .  I t  is most easily described in the context of a particular 
example. 

Example 1 7.2  
Table 1 7 .2  shows the  results from a study to  compare two t reatment regimes for 
controll ing bleeding in haemophi l iacs undergoing surgery. Only one ( 8%) of the 1 3  
haemophil iacs given treatment regime A suffered bleed ing complications, com
pared to three (25%) of the 1 2  given regime B.  These numbers are too small for the 
chi-squared test to be valid; the overall total, 25, is less than 40, and the smallest 
expected value, 1 .9 (complications with regime B), is less than 5. The exact test is 
therefore indicated. 

Tab le  1 7.2 Comparison of two treatment regimes for controll ing bleeding in 

haemophil iacs undergoing surgery. 

Treatment regime 

A (group 1 )  

B (group O) 

Total 

Bleeding complications 

Yes 

1 (d, ) 

3 (do) 
4 (d) 

No 

1 2  (hi )  
9 (ho) 

21 (h) 

Total 

1 3  (n1 ) 
1 2  (no) 
25 (n) 

The exact test is based on calculating the exact probabil it ies of the observed table 
and of more 'extreme' tables with the same row and column totals, using the 
following formula: 

. . 
1 

c/!h !n ,  !no ! 
Exact probability of 2 x 2 tab e = 1 / le/, ,1 ,1 1 n .c. , .  0 - 1 1 . 10 .  

where the notation is the same a s  that defined in Table 1 6. 1 .  The exclamation 
mark denotes the factorial of the number and means al l  the integers from 
the number down to 1 mult ipl ied together. (O !  is defined to equal 1 . ) Many calcula
tors have a key for factorial, although this expression may be easily computed by 
cancell ing factors in the top and bottom. The exact probabil i ty of Table 1 7 .2  is 
therefore: 
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4!2 1 ! 1 3 ! 1 2 ! 4 x 1 3  x 1 2  x I I  x J O  
25 ! 1 ! 3 ! 1 2 !9 !  

= 
25 x 24 x 23 x 22 

= 0 ·226 1 

(2 1 ! being cancelled into 25 ! ,  for example, leaving 25 x 24 x 23 x 22) .  

In  order to test the nul l  hypothesis that there i s  no difference between the 
treatment regimes, we need to calculate not only the probabil ity of the observed 
table but also the probabil ity that a more extreme table could occur by chance. 
Altogether there are five possible tables that have the same row and column totals 
as the data. These are shown in Table 1 7 .3 together with their probabil it ies, which 
total l .  The observed case i s  Table 1 7.3(b) with a probabi l i ty of 0.226 1 .  

Table 1 7 .3 All possible tables with the same row and column totals as Table 1 7 .2, 

together with their probabilities. 

(a) Total (b) Total 

0 1 3  1 3  1 2  1 3  

4 8 1 2  3 9 1 2  

Total 4 21  25 Total 4 2 1  25  

p = 0.0391 p = 0.2261 

(c) Total (d) Total 

2 1 1  1 3  3 1 0  1 3  
2 1 0  1 2  1 1  1 2  

Total 4 2 1  25 Total .4 21  25 

p = 0.4070 p = 0.27 1 3  

(e) Total 

4 9 1 3  

0 1 2  1 2  

Total 4 2 1  2 5  

p = 0.0565 

There are two approaches to calculating the P-value. In the first approach, more 
extreme i s  defined as less probable; more extreme tables are therefore l 7 . 3 (a) and 
l 7 .3(e) wi th probabi l ities 0 .039 1 and 0.0565 respectively. The total probabi l i ty 
needed for the P-value is therefore 0 .226 1 + 0 .039 1 + 0.0565 = 0 .32 1 7, and so 
there is clearly no evidence against the nul l  hypothesis of no difference between 
the regimes. 

P-value (approach I )  = probabil i ty of observed table + probabi l i ty of 
less probable tables 

P-value (approach I I )  = 2 x (probabil ity of observed table + probabi l i ty 
of more extreme tables i n  the same d irect ion) 
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The alternat ive approach is to restrict the calculation to extreme tables showing 
differences in the same direction as that observed, and then to double the result ing 
probabil ity in order to cover differences in the other direction. In this example, the 
P-value thus obtained would be twice the sum of the probabili t ies of Tables 
1 7  .3 (a)  and 1 7  .3 (b ) , namely 2 x (0 .039 1 + 0.226 1 )  = 0 .5304. Neither method is 
clearly superior to the other, but the second method is simpler to carry out .  
Although the two approaches give different results, the choice is unl ikely, in 
practice, to affect the assessment of whether the observed difference is  due to 
chance or to a real effect. 

1 7 . 4  L A R G E R  C O N T I N G E N C Y T A B L E S  

So far, we have dealt  with 2 x 2 tables, which are used t o  display data classified 
accord ing to the values of two binary variables. The chi-squared test can also be 
applied to larger tables, generally called r x c  tables, where r denotes the number of 
rows in  the table and c the number of columns. 

(0 £)2 x2 = I:: � , d . f. = (r - 1 )  x (c - 1 )  

There is no continuity correction or exact test for contingency tables larger than 
2 x 2 .  Cochran ( 1 954) recommends that the approximation of the chi-squared test 
is valid provided that less than 20°/c, of the expected numbers are under 5 and none 
is less than 1 .  This restriction can sometimes be overcome by combining rows (or 
columns) with low expected numbers, providing that these combinations make 
biological sense. 

There is no quick formula for a general r x c table. The expected numbers 
must be computed for each cel l .  The reasoning employed is the same as that 
described above for the 2 x 2 table. The general rule for calculating an expected 
number is :  

column total x row total £ =----------

overall total 

It is  worth pointing out that the chi-squared test is only valid if applied to the 
actual numbers in the various categories. It must never be applied to tables 
showing just proportions or percentages. 
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Example 1 7.3  
Table l 7 .4(a) shows the results from a survey to compare the  principal 
water sources in three vil lages in West Africa. These data were also presented 
when we introduced cross-tabulations in Chapter 3. The numbers of households 
using a river, a pond, or a spring are given . We will treat the water source as 
outcome and vil lage as exposure, so column percentages are d isplayed. For 
example, in  vi llage A, 40.0% of households use mainly a river, 36 .0% a pond 
and 24.0% a spring. Overal l ,  70 of the 1 50 households use a river. If there were no 
difference between vil lages one would expect this same proportion of river usage 
in each vil lage. Thus the expected numbers of households using a river in vil lages 
A, B and C, respectively, are: 

70 TSO x 50 = 23 .3 ,  
70 TSO x 60 = 28.0 and 

70 TSO x 40 = t 8 .7 

The expected numbers can also be found by applying the general rule. For 
example, the expected number of households in vil lage B using a river is :  

row total ( B) x column total ( river) 
= 

60 x 70 
= 28 0 

overall total 1 50 
· 

The expected numbers for the whole table are given in Table 1 7 .4(b) . 

Table 1 7 .4 Comparison of principal sources of water used by households in three 

vi l lages in West Africa. 

(a) Observed numbers. 

Water source 

Village River Pond Spring Total 

A 20 (40.0%} 1 8  (36.0%) 1 2  (24.0%) 50 (1 00.0%) 

B 32 (53.3%) 20 (33.3%) 8 (1 3.3%) 60 (1 00.0%) 
c 1 8  (45.0%) 12 (30.0%) 1 0  (25.0%) 40 (1 00.0%) 

Total 70 (46.7%) 50 (33.3%) 30 (20.0%) 1 50 (1 00.0%) 

(b) Expected numbers. 

Water source 

Village River Pond Spring Total 

A 23.3 1 6.7 1 0.0  50 
B 28.0 20.0 1 2 .0 60 
c 1 8.7  1 3 .3 8.0 40 

Total 70 50 30 1 50 
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x2 = I; 
( o - £)2 

E 
= (20 - 23 . 3 )2 /23 .3 + ( 1 8 - 1 6.7 )2/ 1 6 .7 + ( 1 2 - 1 0 .0)2/ 1 0 .0+ 

(32 - 28 .0)2 / 28.o + ( 1 8 - t 8 .7 )2 / t 8.7 + (20 - 20.0)2 ;20 .0+ 

(8  - 1 2 .0)2 / 1 2 .0 + ( 1 2  - 1 3 .3 )2 / 1 3 . 3  + ( 1 0 - 8 .0)2 /8 .0  

= 3 . 53 

d. f. = (r - 1 )  x ( c - 1 )  = 2 x 2 = 4 

The corresponding P-value (derived using a computer) is 0.47, so we can conclude 
that there is no evidence of a difference between the vil lages in the proportion of 
households using different water sources. Alternatively, we can see from the 
fourth row of Table A5 (see Appendix) that since 3 . 53  l ies between 3 . 36  and 
5 .39, the P-value l ies between 0 .25 and 0.5. 

1 7  .5 0 R D E R E D  E X P O  S U  R E S :  x2 T E S T  F O R  T R E N D  

We now consider the special case where we have a binary outcome variable and 
several exposure categories, which have a natural order. The standard chi-squared 
test for such data is a general test to assess whether there are differences among the 
proportions in the different exposure groups. The x2 test for trend, described now, 
is  a more sensitive test that assesses whether there is an increasing (or decreasing) 
trend in  the proportions over the exposure categories. 

Example 1 7.4 
Table 1 7 . 5  shows data from a study that examined the association between obesity 
and age at menarche in  women. The outcome was whether the woman was aged 
< 1 2  years at menarche (event D) or aged > 1 2+ years (event H) .  The exposure, 
obesity, is represented by triceps skinfold, categorised into three groups. Although 
it is conventional that the exposure variable is the row variable, this is not an 
absolute rule. For convenience, we have not followed this convention, and have 

Table 1 7 .5.  Relationship between triceps skinfold and early menarche. Data from a study on obesity in  women 

(Beckles et al. (1 985) International Journal of Obesity 9:  1 27-35). 

Age at menarche 

< 12 years (D) 

12 + years (H) 
Total 

Exposure group score (x) 
Odds of early menarche 

Log odds 

Small 

1 5  (8.8%) 

1 56 (91 .2%) 
1 71 (1 00%) 

0 

0.1 0 (0.06 to 0.1 6) 

-2 .34 (-2.87 to - 1 .8 1 )  

Triceps skinfold group 

Intermediate Large Total 

29 ( 1 2 .8%) 36 (1 9.4%) 80 

1 97 (87.2%) 1 50 (80.6%) 503 
226 (1 00%) 1 86 (1 00%) 583 

1 2 
0. 1 5  (0. 1 0 to 0.22) 0.24 (0. 1 7 to 0.35) 

-1 .92 (-2.31 to -1 .53) -1 .43 ( - 1 .  79 to - 1 .06) 
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Fig. 1 7 . 1  Log odds of early menarche according to skinfold thickness group. 

2 

presented the exposure in the columns and the outcome in the rows. I t  can be seen 
that the proportion of women who had experienced early menarche i ncreased with 
triceps skinfold size. This can be examined using the x2 test for trend. 

The first step is to assign scores to the exposure groups. The usual choice is simply 
to number the columns 0, 1 ,  2, etc . ,  as shown here (or equivalently I ,  2, 3 ,  etc . ) .  This is  
equivalent to assuming that the log odds goes up (or down) by equal amounts 
between the exposure groups, or in other words that there is a l inear relation
ship between the two. The odds and log odds of early menarche are shown below 
the exposure scores, and the log odds with 95% confidence intervals are plotted in  
Figure 1 7 . I .  I t  is clear that the assumption of a l inear increase in  log odds, with 
exposure group is reasonable. The difference in log odds is  ( - 1 .92 - -2.34) = 0.42 
between groups I and 0, and (- 1 .43 - - 1 . 92) = 0.49 between groups 2 and I .  

Another possibil ity would have been to use the means or medians of the t riceps 
skinfold measurements in each group. The assumption here would be a l inear 
relationship between log odds and triceps skin fold measurement. The two ap
proaches wil l give similar results if the differences between the means (or medians) 
are similar between the triceps skinfold groups. 

The next step is to calculate three quantities for each exposure group in the table 
and to sum the results of each. These are: 
1 dx, the product of the observed number, d, with outcome D, and the exposure 

group score, x; 
2 nx, the product of the total, n, in the exposure group and its score, x; and 
3 nx2 , the product of the total, n, in the exposure group and the square of its 

score, x2 . 
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Using N to denote the overal l  total and 0 the total observed number of events ( the 
total of the top row),  we then calculate: 

0 
U = "L,(dx) -

N 
"L,(nx) and 

O(N - 0) 7 7 
V = 7 ( ) [N"L,(nx-) - (I:,nx)-] 

N- N - 1 

The increase i n  log odds ratio per group is estimated by UIV, with standard error 
vC I I V) .  The formula for the chi-squared statistic is :  

u2 
X�rend = V ' d .f. = J 

This tests the nul l  hypothesis that the l inear increase in log odds per exposure 
group 1s zero. 

There are various d ifferent forms for this test, most of which are algebraical ly 
equivalent .  The only d i fference is that in some forms (N  - 1 )  is  replaced by N in 
the calculation of V. This difference is unimportant .  

Example 1 7.4 (continued) 
The calculations for the data presented in Table 1 7 .5  are as fol lows: 

l:,(dx) = I 5 x 0 + 29 x I + 36 x 2 = I 0 I 

"L,(nx) = 1 7 1  x 0 + 226 x 1 + 1 86 x 2 = 598 

l:,(nx2 ) = 1 7 1  x 0 + 226 x I + 1 86 x 4 = 970 

0 = 80, N = 583, N - 0 = 503 

U = I O I  - (
5
8
8

°

3 
x 598) = 1 8 .94 1 7  

V = (5��2x}��2) x (583 x 970 - 5982) = 42 .2927 

The increase in log odds ratio per group is U / V = 0.445 :  approximately an 
average of the differences between groups I and 0, and 2 and l ( see above) .  I ts  
standard error is /( l / V) = 0. 1 54 and the 95% CI (derived in  the usual way) is  
0 . 1 46 to 0 .749. This converts to an odds ratio per exposure group of l . 565 (95% CI 
I .  I 58 to 2 . 1 1 5) .  The ch i-squared statistic is :  

? ( 1 8 .94 1 7 )2 
Xtrend = 42_2927 = 8 .483, d . f. = I ,  P = 0.0036. 
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There is therefore strong evidence that the odds of early menarche increased with 
increasing triceps skinfold. 

This is  a simple example of a dose-response model for the association between an 
exposure and a binary outcome. We show in Chapter 1 9  that a logistic regression 
model for this association gives very similar results. Note that the difference 
between the standard x2 vafoe and the trend test x2 value provides a chi-squared 
value with ( c  - 2) degrees of freedom to test for departures from linear trend, where 
c is the number of exposure groups. Such tests are described in more detai l ,  in the 
context of regression modell ing, in Section 29 .6 .  
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Control ling for confounding: 
str atif i ca ti on 

1 8. 1  I ntroduction Mantel-Haenszel x2 test 

1 8.2 Confounding Validity of Mantel-Haenszel 

1 8.3 Stratification to control for methods 

confounding 1 8.5 Effect modification 

1 8.4 Mantel-Haenszel method for Testing for effect modification 

2 x 2 tables When does effect modification 

Mantel-Haenszel estimate of the matter? 

odds ratio controlled for confounding 1 8.6 Stratification on more than one 

Standard error and confidence confounding variable 

interval of the Mantel-Haenszel O R  

1 8 . 1  I N T R O D U C T I O N  

Previous chapters i n  this part o f  the book have presented methods t o  examine the 
association between a binary outcome and two or more exposure (or treatment )  
groups. We have used confidence intervals and P-values to assess the l ikely size o f  
the association, and the  evidence that it represents a real difference i n  disease risk 
between the exposure groups. However, before attributing any difference i n  
outcome between the exposure groups to the exposure i tself, i t  i s  important t o  
examine whether the exposure-outcome association has been affected by  other 
factors that differ between the exposure groups and which also affect the outcome. 
Such factors are said to confound the association of interest .  Failure to control for 
them can lead to confounding bias. This fundamental problem is i l lustra ted by an 
example in the next section .  

I n  this chapter, we describe the Mantel-Haenszel method that uses stratification 
to control for confounding when both the exposure and outcome are binary 
variables. In Chapter 1 1 , on multiple regression for the analysis of numerical 
outcomes, we briefly described how regression models can be used to control for 
confounding. We wil l explain this in much more detail in Chapter 20 in the context 
of logistic regression for the analysis of binary outcomes . 

1 8 . 2  C O N F O U N D I N G  

Example 1 8. 1 
Table 1 8 . 1  shows hypothetical results from a survey carried out to compare the 
prevalence of antibodies to leptospirosis in rural and urban areas of the West 
Indies, with rural residence as the exposure of interest. 
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Table 1 8 . 1  Results of a survey of the prevalence of leptospirosis in rural and urban areas of the 

West Indies. 

Leptospirosis antibodies 

Type of area Yes No Total Odds 

Rural 60 (30%) 1 40 (70%) 200 0.429 

Urban 60 (30%) 1 40 (70%) 200 0.429 

Total 1 20 280 400 

Since the numbers of individuals with and without antibodies are identical i n  
urban and rural areas, the odds ratio i s  exactly l and we  would conclude that 
there is no association between leptospirosis antibodies and urban/rural residence. 
However, Table 1 8 .2  shows that when the same sample is  subdivided according to 
gender, the risk of having antibodies is higher in rural areas for both males and 
females. The d isappearance of this effect when the genders are combined is caused 
by a combination of two factors: 
1 Females in both areas are much less l ikely than males to have antibodies. 
2 The samples from the rural and urban areas have d ifferent gender compositions. 

The proportion of males i s  1 00/200 (50%) in  the urban sample but only 50/200 
(25%) in the rural sample. 

Table 1 8.2 Association between antibodies to leptospirosis (the outcome variable) and rural/ 

urban residence (the exposure variable), separately in males and females. 

(a) Males. 

Antibodies 

Type of area Yes No 

Rural 36 (72%) 14 (28%) 

Urban 50 (50%) 50 (50%) 

Total 86 64 

OR = 2 .57 /I = 2 .57 (95% C l = 1 .2 1  to 5.45) ,  P = 0.0 1 1 

(b) Females. 

Antibodies 

Type of area Yes No 

Rural 24 (1 6%) 1 26 (84%) 

Urban 10 (1 0%) 90 (90%) 

Total 34 2 1 6  

Total 

50 

1 00 

1 50 

Total 

1 50 

1 00 

250 

OR = 0 . 1 9/0. 1 1 = 1 .7 1  (95% Cl = 0.778 to 3.78), P = 0. 1 76 

Odds 

2.57 

1 .00 

Odds 

0.1 9 

0.1 1 
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Gender is said to be a confounding variable because it is related both to the 
outcome variable (presence of antibodies) and to the exposure groups being 
compared ( rura l  and urban) .  Ignoring gender in the analysis leads to a bias in 
the results .  Analysing males and females separately provides evidence of a differ
ence between the rural and urban areas for males but not for females (Table 1 8 .2) .  
However, we would l ike to be able to combine the information in the two tables to 
estimate the association between leptospirosis antibodies and urban/rural resi
dence, having allowed for the association of each of these with gender. We describe 
how to do this in the next section. 

In general confounding occurs when a confounding variable, C, is  associated with 
the exposure, E, and also influences the disease outcome, D .  This is i l lustrated in 
Figure 1 8 . 1 .  We are i nterested in the E-D association, but the E-C and C-D 
associations may bias our estimate of the E-D association unless we take them into 
account  in  our analysis. 

In our example, fai lure to allow for gender masked an association with urban/ 
rural residence. In  other situations similar effects could suggest a difference or 
association where none exists, or could even suggest a difference the opposite way 
around to one that does exist. For example, in the assessment of whether persons 
suffering from schistosomiasis have a higher mortality rate than uninfected per
sons, it would be important to take age into account since both the risk of dying 
and the risk of having schistosomiasis increase with age . If age were not al lowed 
for, schistosomiasis would appear to be associated with increased mortality, even 
if it were not, as those with schistosomiasis would be on average older and 
therefore more l ikely to die than younger uninfected persons. 

Note that a variable that is part of the causal chain leading from E to D is not a 
confounder. That is, if E affects C, which in turn affects D, then we should not 
adjust for the effect of C in our analysis of the E-D association (unless we wish to 
estimate the effect of E on D which is not caused by the E-C associat ion) .  For 
example, even though smoking during pregnancy is related both to socio-economic 
status and the risk of having a low birth-weight baby, it would be incorrect to 
control for i t  when examining socio-economic differences in  the risk of low birth 

c 

E D 
Fig. 1 8. 1  Situation in which C may confound the affect of the E-D association. 
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weight ,  since i t  is on the causa l path .  Controll ing for i t  in the analysis would lead 
to an underest imate of any socio-economic differences in risk . These issues are 
d iscussed in more detail in Section 38 .5 .  

Note that in  clinical trials (and other experimental studies), randomization i s  used 
to allocate individuals to the different treatment groups (see Chapter 34). Provided 
that such trials are large enough to ensure that chance differences between the 
groups are small, the problem of confounding is thus avoided, because the treat
ment and control groups will be similar in all respects other than those under trial . 

1 8 . 3  S T R AT I F I C AT I O N  TO C O N T R O L  F O R  C O N F O U N D I N G  

One way to solve the problem of confounding i n  the analysis is to restrict 
comparisons to individuals who have the same value of the confounding variable 
C. Among such individuals associations with C cannot bias the E-D association, 
because there is no variation in C. Thus in Example 1 8 . 1  above, the association 
between leptospirosis antibodies and urban/rural residence was examined separ
ately for males and females. The subsets defined by the levels of C are called strata, 

and so this process is known as stratification. It leads to separate estimates of the 
odds ratio for the E-D association in each stratum. There is no reason why C 
should be a binary variable: for example we might allow for the confounding 
effects of age by splitting a sample of adults aged 1 5  to 50 years into seven five
year age groups. 

Unless it appears that the association between the exposure and outcome varies 
markedly between the strata (see Section 1 8 .5 ) ,  we will usually wish to combine the 
evidence from the separate strata and summarize the association, controlling for 
the confounding effect of C. The simplest approach would be to calculate an 
average of the estimates of the odds ratios of the E-D association from the 
different strata. However, we know that, in general, strata in which there are 
more i nd ividuals will tend to have a more precise estimate of the association ( i .e .  
one with a smaller standard error) than strata in which there are fewer individuals. 
We therefore calculate a weighted average, in  which greater weight is  given to the 
strata with more data. 

. �(w; x OR; )  
Weighted average OR = --�--

L:w; 

where OR; is the odds ratio in stratum i, and w; is the weight i t  is given in the 
calculation of the weighted average odds ratio. This is also known as the summary 

odds ratio. Note that in a weighted average, the weights (w; )  are always posit ive 
numbers . The larger the value of w;, the more OR; infl uences the weighted average 
OR. Also note that if al l  the weights were equal to 1 ,  then the weighted average OR 
would be equal to the mean OR. 

The most widely used weighting scheme is that proposed by Mantel and 
Haenszel, as described i n  the next section . 
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1 8 . 4  M A N T E L- H A E N S Z E L  M ET H O D  F O R  2 x 2 TA B L E S  

Mantel-Haenszel methods can be used to combine the evidence from the separate 
strata, and summarize the association, controlling for the confounding effect of C.  
We wi l l  describe their use when both the outcome and exposure are binary 
variables. I n  this case, the stratified data will consist of c separate 2 x 2 tables, 
where c i s  the number of different values the confounding variable can take. Table 
1 8 .3  shows the notation we will use for the 2 x 2 table in stratum i. I t  i s  exactly the 
same as that i n  Table 1 6 . 1  for a single 2 x 2 table, but with the subscript i added, 
to refer to the stratum i. The estimate of the odds ratio for stratum i is :  

In  Table 1 8 .2, gender is  the confounding variable; c = 2, and we have two tables of 
the association between rural/urban residence and presence of leptospirosis anti
bodies, one for males and one for females. 

Table 1 8.3 Notation for the 2 x 2 table in stratum i. 

Group 1 (exposed) 

Group 0 (unexposed) 

Total 

Experienced event: 

D (Disease) 

d; 

Outcome 

Did not experience event: 

H (Healthy) 

hli 
ho; 

h; 

Mantel-Haenszel estimate of the odds ratio controlled 
for confounding 

Total 

n; 

The Mantel-Haenszel estimate of the summary odds ratio, which we shall denote 
as ORMH, i s  a weighted average of the odds ratios from the separate strata, with 
weights :  

do; x h l i  \V; = ---

Since t he numerator of the weight is the same as the denominator of the odds 
ratio (OR;) in  stratum i, w; x OR; = (d1 ; x ho; )/n;. Using these weights therefore 
leads to the fol lowing formula for the Mantel-Haenszel estimate of the odds 
ratio: 
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d1 · x ho· I; I I 

ORuH = 
L;(w; x OR;)  

= 
n; 

L;w; I; do; x hu 
11; 

Following the notation of Clayton and H il ls ( 1 993) ,  this can alternatively be 
written as: 

ORMH = Q/R, where 

Q = 
L; d1 ;  x ho; 

and R = 
L; do; x h 1 ;  

n; 11; 

Example 1 8. 1  (continued) 
Table 1 8 .4 shows the results of the calculations required to derive the M antel
Haenszel odds ratio combining the data presented separately for males and females 
in Table 1 8 .2 on the association between antibodies to leptospirosis ( the outcome 
variable) and rural/urban residence (the exposure variable) . This Mantel-Haenszel 
estimate of the odds ratio control l ing for gender equals: 

Q 20.64 
ORMH = R = 9.71 = 2. 1 3  

After controlling for the confounding effect of gender, the odds of leptospirosis 
antibodies are more than doubled in rural compared to urban areas. The summary 
OR (2 . 1 3) is, as expected, in between the odds ratios from the two strata, but is 
marginally closer to the OR for females ( 1 . 7 1 )  than it is  to the OR for males (2 .57) .  
This is  because the weight allocated to the estimate for females (5 .04) is  a l itt le 
higher than that for males (4.67) . 

Tab le  1 8.4 Calculations required for deriving the Mantel-Haenszel OR, with associated confidence interval and P-

value. 

Stratum i ORi 
doi x hli dli x hoi 

vi d,i Eli Wj = -- wiORi = --
ni ni 

Males ( i  = 1 ) 2.57 
so x 14 

= 4.67 
1 50 1 2 .00 8.21 36 28.67 

Females ( i  = 2) 1 .7 1  
1 0  x 1 26 

= 5.04 
250 

8.64 7.08 24 20.40 

Total R = 9.71 Q = 20.64 v = 1 5 .29 0=60 E = 49.07 
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Standard error and confidence interval of the Mantel-Haenszel OR 

The 95% confidence i nterval for ORMi-t is derived using the standard error of 
1og ORM1-1 , denoted by s .e .M1-1, in exactly the same way as that for a single odds 
ratio (see Section 1 6 . 7 ) :  

95% CI  = ORMH /EF to ORMH x EF,  

where the  error factor E F  = exp( l .96 x s .e .MH) 

The simplest formula for the standard error of log ORMH (Clayton and H il ls 
1 993)  is :  

s .e .MH = ..j[ V /(Q x R)] ,  

d1 · x ho · do x h 0 = � I I R = � . i I i -- n; , n; , 
d x h · x no · x n 1 · v = � V;  

= 
� I ? I I I 

n-; x (n; - 1 )  

V is the sum across the strata of the variances V; for the number of exposed 
individuals experiencing the outcome event, i .e .  the variances of the d1 ; 's .  Note 
that the formula for the variance V; of di ; for stra tum i is based solely on the marginal 
totals of the table. I t  therefore gives the same value for each of the four cells in the 
table, implying they have equal variances. This is the case because once we know one 
cell value, we can deduce the others from the appropriate marginal totals . 

Example 1 8. 1 (continued) 
Using the results of the calcu lations for Q, R and Vshown in Table 1 8 .4, we find that: 

s .e . lv!H = y'[ V/( Q x R)] = y'[I 5 .287/(20 .640 x 9 .7 1 )] = 0.276 

so that EF = exp( l .96 x 0.276) = 1 . 72, ORMH /EF = 2. 1 3/ 1 . 72 = 1 .24 and 
ORMH x EF = 2 _  1 3  x 1 .  72 = 3.65. The 95% CI is therefore: 

95% CI for ORM1-1 = 1 .24 to 3 .65 

With 95% confidence, the odds of leptospirosis is between l _24 and 3 .65 times higher 
in rural than urban areas, having controlled for the confounding effect of gender. 

Mantel-Haenszel x2 test 

Finally, we test the nul l  hypothesis that ORMt-t = I by calculating the Mantel

Haenszel x2 test statistic: 
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2 ("Edu - "£El i  ) 2 XMH = 
"E V;  

( 0 - E)2 
= 

u2
. d f = 1 

V V ' 
. .  

This is based on a comparison in  each stratum of the number of exposed individ
uals observed to have experienced the event (d1 ;), with the expected number in  this 
category (£1;) i f  there were no difference in the risks between exposed and unex
posed . The expected numbers are calculated in exactly the same way as that 
described for the standard x2 test in Chapter 1 7 : 

The formula has been simplified by writing 0 for the sum of the observed numbers, 
E for the sum of the expected numbers and U for the difference between them: 

0 = "Edi ; ,  E = "EEu and U = 0 - E 

Note that x7wH has just 1 degree of freedom irrespective of how many strata are 
summarized. 

Example 1 8. 1 (continued) 

The calculations for the data presented in  Table 1 8 .2  are laid out in Table 1 8 .4. A 
total 0 = 60 persons in rural areas had antibodies to leptospirosis compared with 
an expected total of E = 49.07, based on assuming no difference in  prevalence 
between rural and urban areas. Thus the Mantel-Haenszel x2 statistic is :  

2 u2 (60 - 49 .07)2 
XMH = V = 

1 5 .29 
= 7 .82, d . f. = 1 ,  P = 0.0052 

After controlling for gender, there is  good evidence of an increase in  the preva
lence of antibodies to leptospirosis among those l iving in rural compared to urban 
areas. 

I t  may seem strange that this test appears to be based entirely on the observed and 
expected values of du and not also on the other cel ls in the tables. This is  not really 
the case, however, since once the value of du i s  known the values of h 1 ; , do; and ho; 
can be calculated from the totals of the table. I f  the Man tel-Haenszel test i s  
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applied to a single 2 x 2 table, the x2 value obtained is close to,  but not exactly 
equal to, the standard x2 value. It is slightly smaller, equal l ing (11 - 1 )/n t imes the 
standard value. This difference is negligible for values of n of 20 or more, as 
required for the validity of the chi-squared test .  

Validity of  Mantel-Haenszel methods 

The Mantel-Haenszel estimate of the odds ratio is valid even for small sample 
sizes. However, the formula that we have given for the standard error of log 
OR,11H wil l be inaccurate if the overall sample size is small .  A more accurate 
estimate, which is more compl icated to calculate, was given by Robins et al. 
( 1 986) .  

The validity of the M antel-Haenszel x2 test can be assessed by the following 
' rule of 5'. Two additional values are calculated for each table and summed over 
the strata .  These are: 
1 min(d;, ni ; ) ,  that is  the smaller of d; and n 1 ; , and 
2 max(O, n i ;  - h;), which equals 0 i f  n 1 ;  is smaller than or equal to h;, and 

(n 1 ;  - h;), i f  n 1 ;  is larger than h;. 
Both sums must differ from the total of the expected values, £, by at least 5 for the 
test to  be valid. The details of these calculations for the leptospirosis data are 
shown in Table 1 8 .5 .  The two sums, 84 and 0, both differ from 70.933 by 5 or 
more, validating the use of the Mantel-Haenszel x2 test . 

Tab le  1 8.5 Rule of 5, to check validity. 

Stratum i Min(d;, nli). Max(O, nli - h;) E; 

Males (i = 1 )  Min(86, 50) = 50 Max(O, - 1 4) = 0 57.333 

Females (i = 2) Min(34, 1 50) = 34 Max(O, - 1 1 6) = 0 1 3 .600 

Total 84 0 70.933 

1 8 . 5  E F F E C T  M O D I F I CA T I O N  

When we use Mantel-Haenszel methods t o  control for confounding we 
are making an important assumption; namely that the Exposure-Disease (E-D) 
association is  real ly the same in each of the strata defined by the levels of 
the confounding variable, C .  If this is not true, then i t  makes l i t t le sense 
to combine the odds ratios (the estimates of the effect of E on D) from 
the different strata. I f  the effect of E on D varies according to the level of 
C then we say that C modifies the effect of E on 0 :  in other words there 
is  effect modification. A number of different terms are used to describe effect 
modification: 
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• Effect modification: C modifies the effect of E on D .  
• Interaction: there i s  interaction between the effects of E and C (on  D) .  
• Heterogeneity between strata: the estimates of the E-D association differ 

between the strata. 
Similarly, you may see tests for effect modification described as e ither tests for 

interaction or tests of homogeneity across strata. 

Testing for effect modification 

The use of regression models to examine effect modification (or equivalently 
interaction) is discussed in  Section 29. 5 .  This 1s the most flexible 
approach. When we are using Mantel-Haenszel methods to control for con
founding, an alternative is to use a x2 test for effect modification. This is 
equivalently, and more commonly, called a x2 test of heterogeneity. Under 
the nul l  hypothesis of no effect modification, al l the individual stratum odds 
ratios would equal the overall summary odds ratio. In other words: 

OR 
_ d1 ; x ho; _ 

OR ; - - MH 
do; x h l i  

Multiplying both sides o f  the equation by  do; x h l i  and rearranging shows that, 
under the nul l  hypothesis of no effect modification, the following set of differences 
would be zero: 

(d1 ; x ho; - ORMH x do; x h l i) = 0 

The x2 test of heterogeneity is based on a weighted sum of the squares of these 
differences: 

? 
2 _ " (di i x ho; - ORMH x do; x h l i)-

d f X - u 
OR ? , . . = c - 1 

MN X V; X n-; 

where V; is as defined in Section 1 8 .4, and c is the number of strata. The greater 
the differences between the stratum-specific odds ratios and ORM1-1 , the larger wil l  
be the heterogeneity statistic. 

Example 1 8. 1 (continued) 
I n  our example, the odds ratios were 2 .57 (95% CI 1 .2 1  to 5 .45) in males and 1 . 7 1  
(95% C I  0.778 to 3 .78 )  i n  females. Given that the confidence intervals easily 
overlapped, we would not expect to find evidence of effect modification ( i .e. that 
the OR in males is  different to the OR in females). The calculations needed to 
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Table 1 8.6  Calculations required for the x2 test of heterogeneity. 

Stratum 
(dii x ho; - ORMH x do; x hli)2 

( i )  

Males (36 x so - 2 . 1 3  x so x 1 4)2 

{i = 1 ) = 97056.2 

Females (24 x 90 - 2 . 1 3  x 1 0  x 1 26)2 

(i = 2) = 269601 

Total 

ORMH x V; x nf 
2 . 1 3  x 8.21 x 1 502 

= 392737 

2 . 1 3  x 7.08 x 1 502 

= 940728 

(dli x ho; - ORMH x do; x hli)2 

ORMH x V; x nf 
97056.2 

392737 
= 0·247 

269601 = 0.287 
940728 

O.S34 

apply t he formula above are given in Table 1 8 .6 .  The resulting value of the x2 test 
of heterogeneity is :  

x2 = o. 534, d.f .  = 1 ,  P = 0.470 

There is thus no evidence that gender modifies the association between rural/ 
urban residence and leptospirosis antibodies. 

When does effect modification matter? 

As d iscussed above, Mantel-Haenszel methods assume that the t rue E
D odds ratio is t he same in each stratum, and that the only reason 
for d ifferences in the observed odds ratios between stra ta  is sampling 
variation. We should t herefore check this assumption, by applying the 
x2 test for heterogeneity, before reporting Mantel-Haenszel odds ratios, confi
dence intervals and P-values. This test has low power (see Chapter 35) :  i t  is  
unl ikely to yie ld evidence for effect modification unless there are large differences 
between strata. A large P-value does not therefore establish the absence of 
effect modification. In fact, as the true odds ratios are never l ikely to be 
exactly the same in each stratum, effect modification is always present to 
some degree. Most researchers would accept, however, that minor effect 
modification should be ignored in order to simplify the presentation of the 
data. 

The following box summarizes a practical approach to examining for effect 
modification, and recommends how analyses should be presented when evidence 
for effect modification is  found. These issues are also discussed in Section 29.5 and 
Chapter 38, which describes strategies for data analysis. 
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BOX 1 8.1 A PRACTICAL APPROACH TO EXAMINING FOR 
EFFECT MODIFICATION 

1 Always examine the pattern of odds ratios in the different strata: how 
different do they look, and is there any trend across strata? 

2 If there i s  clear evidence of effect modificat ion, and substantial differences 
in the E-D association between strata, report this and report the E-D 
association separately in each stratum. 

3 If there is  moderate evidence of effect modification, use M antel-Haenszel 
methods but in addition report stratum-specific estimates of the E-D 
association. 

4 If  there is  no evidence of effect modification, report this and use Mantel
H aenszel methods. 

1 8 . 6  S T R AT I F I CA T I O N  ON M O R E  T H A N  O N E  C O N F O U N D I N G  
VA R I A B L E  

I t  i s  possible t o  apply the Mantel-Haenszel methods t o  control simultaneously for 
the effects of two or more confounders. For example, we can control additionally 
for differences in  age distribution between the urban and rural areas by grouping 
our population into four age groups and forming the 2 x 4 = 8 strata correspond
ing to all combinations of gender and age group. The drawback to this approach is 
that the number of strata increases rapidly as we attempt to control for the effects 
of more confounding variables, so that i t  becomes impossible to estimate 
the stratum-specific odds ratios (although the Mantel-Haenszel OR can still be 
derived) . 

The a lternative is to use regression models. The use of logistic regression models 
to control for confounding is considered in detail in  Chapter 20. 
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1 9.3 General form of the logistic regres

sion equation 
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Relation with linear regression models 

In this chapter we introduce logistic regression, the method most commonly used 
for the analysis of binary outcome variables. We show how it can be used to 
examine the effect of a single exposure variable, and in particular, how it can be 
used to: 
• Compare a b inary outcome variable between two exposure (or t reatment) 

groups. 
• Compare more than two exposure groups. 
• Examine the effect of an ordered or continuous exposure variable. 
We will see that i t  gives very similar results to the methods for analysing odds ratios 
described in Chapters 1 6, 1 7  and 1 8, and is an alternative to them. We wi l l  also see 
how logistic regression provides a flexible means of analysing the association 
between a binary outcome and a number of exposure variables. In the next 
chapter, we will explain how it is used to control for confounding. We wil l  also 
briefly describe the regression analysis of risk ratios, and methods for the analysis 
of categorical outcomes with more than two levels. 

We wil l explain the principles of logistic regression modell ing in  detail in the 
next section, in the simple context of comparing two exposure groups. In particu
lar, we will show how i t  is based on modell ing odds ratios, and explain how to 
interpret the computer output from a logistic regression analysis . We will then 
introduce the general form of the logistic regression equation, and explain where 
the name ' logistic' comes from.  Finally we will explain how to fit logistic regres
sion models for categorical, ordered or continuous exposure variables. 

Links between multiple regression models for the analysis of numerical out
comes, the logistic regression models introduced here, and other types of regres
sion model in troduced later in the book, are discussed in detail in Chapter 29.  
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1 9 . 2  L O G I S T I C  R E G R E S S I O N  F O R  C O M PA R I N G  T W O  E X P O S U R E  
G R O U P S  

Introducing the logistic regression model 

We will start by showing, in  the simple case of two exposure groups, how logistic 
regression models the association between binary outcomes and exposure vari
ables in  terms of odds ratios. Recall from Chapter 1 6  that the exposure odds ratio 
(OR) is defined as: 

E dd 
. Odds in exposed group 

xposure o s ratio = ---. -------

Odds 111 unexposed group 

If we re-express this as: 

Odds in  exposed = Odds in unexposed x Exposure odds ratio 

then we have the basis for a simple model for the odds of the outcome, which 
expresses the odds in  each group in terms of two model parameters. These are: 
1 The baseline odds. We use the term baseline to refer to the exposure group 

against which all the other groups wil l be compared. When there are just two 
exposure groups as here, then the baseline odds are the odds in  the unexposed 
group. We will use the parameter name 'Baseline' to refer to the odds in the 
baseline group. 

2 The exposure odds ratio. This expresses the effect of the exposure on the odds of 
disease. We will use the parameter name 'Exposure' to refer to the exposure 
odds ratio. 

Table 1 9  . 1  shows the odds in  each of the two exposure groups, in terms of the 
parameters of the logist ic regression model. 

Table 1 9 . 1  Odds of the outcome in terms of the parameters of a logistic regression model comparing two exposure 

groups. 

Exposure group 

Exposed (group 1 )  

Unexposed (group O) 

Odds of outcome 

Baseline odds x exposure odds ratio 

Baseline odds 

Odds of outcome, in terms of 

the parameter names 

Baseline x Exposure 

Baseline 

The logistic regression model defined by the two equations for the odds of the 
outcome shown in Table 1 9 . 1 can be abbreviated to: 

Odds = Baseline x Exposure 
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Since the two parameters in th is  model multiply together, the model is  sa id to be 
multiplicative. This is  in contrast to the multiple regression models described in 
Chapter 1 1 , in which the effects of different exposures were additive. If there were 
two exposures (A and B) ,  the model would be: 

Odds = Baseline x Exposure(A)  x Exposure( B)  

Thus i f, for example, exposure A doubled the odds of disease and exposure B 
trebled it , a person exposed to both would have a six times greater odds of d isease 
than a person in the baseline group exposed to neither. We describe such models in 
detail in the next chapter. 

Example 1 9. 1 
All  our examples of  logistic regression models are based on data from a study of 
onchocerciasis ( ' river blindness' )  in Sierra Leone (McMahon et al. 1 988,  Trans 
Roy Soc Trap Med Hyg 82; 595-600), in which subjects were classified according 
to whether they l ived in vil lages in savannah (grassland)  or rainforest areas. In 
addition, subjects were classified as infected if microfilariae (mj) of Onchocerciasis 
volvulus were found in skin snips taken from the i l iac crest .  The study included 
persons aged 5 years and above. Table 1 9 .2  shows that the prevalence of micro
filarial infection appears to be greater for individuals l iving in rainforest areas 
compared to those l iving in the savannah; the associated odds ratio is 
2 .540 / i .052 = 2 .4 1 3 . 

We wil l now show how to use logistic regression to examine the association 
between area of residence and microfi larial infection in these data. To use a computer 

package to fit a logistic regression model, i t  is necessary to specify just two i tems: 
1 The name of the outcome variable, which in this case is  mf The required 

convention for coding is to code the outcome event ( D) as I ,  and the absence 
of the outcome event ( H )  as 0 .  The variable ml was therefore coded as 0 for 
uninfected subjects and I for infected subjects. 

2 The name of the exposure variable(s ) .  In this example, we have just one exposure 
variable, which is cal led area. The required convention for coding i s  that used 
throughout this book; thus area was coded as 0 for subjects l iving in savannah 
areas ( the baseline or 'unexposed' group) and I for subjects l iving in rainforest 
areas ( the 'exposed' group) .  

Table 1 9.2 Numbers and percentages o f  individuals infected with onchocerciasis according to  their area of 

residence, in a study of 1 302 individuals in Sierra Leone. 

Microfi larial infection 

Area of residence Yes No 

Rainforest di = 541 (71 .7%) hi = 2 1 3  (28.3%) 
Savannah do = 281 (51 .3%) ho = 267 (48.7%) 
(baseline group) 

Total 822 480 

Total Odds of infection 

754 541 /21 3 = 2 .540 

548 281 /267 = 1 .052 

1 302 
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Table 1 9.3 First ten lines of the computer dataset 

from the study of onchocerciasis. 

id 

3 

4 

5 

6 

7 

8 

9 

1 0  

mf 

0 

0 

0 

Area 

0 

1 

0 

1 

0 

1 

0 

The first ten l ines of the dataset, when entered on the computer, are shown in  
Table 1 9 . 3 .  For example, subject number l lived in a savannah area and was 
infected, number 2 l ived in a rainforest area and was also infected, whereas subject 
number 4 l ived in a rainforest area but was not infected. 

The logistic regression model that will be fitted is: 

Odds of rnf infection = Basel ine x Area 

Its two parameters are: 
1 baseline: the odds of infection in the baseline group (subjects l iving in savannah 

areas); and 
2 area: the odds ratio comparing odds of infection among subjects l iving in 

rainforest areas with that among those living in savannah areas. 
Table 1 9  .4 shows the computer output obtained from fitt ing this model . 
The two rows in the output correspond to the two parameters of the logistic 
regression model; area is our exposure of interest, and the constant term refers 
to the baseline group. The same format is used for both parameters, and is based 
on what makes sense for interpretation of the effect of exposure. This means that 
some of the information presented for the constant ( baseline) parameter is not of 
interest . 

Table 1 9.4 Logistic regression output for the model relating odds of infection to area of 
residence, in 1 302 subjects participating in a study of onchocerciasis in Sierra Leone. 

Area 

Constant 

Odds ratio 

2.41 3 

1 .052 

z 

7.487 

0.598 

P > lzl 

0.000 

0.550 

95% Cl 

1 .91 6 to 3.039 

0.890 to 1 .244 
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The column label led 'Odds ratio' contains the parameter estimates: 

1 For the fi rst row, label led 'area', this is the odds ratio (2 .4 1 3 ) comparing 
rainforest (area I )  with savannah (area 0 ) .  This is identical to the odds ratio 
which was calculated directly from the raw data (see Table 1 9 . 3 ) .  

2 For the second row, labelled 'constant' ,  this i s  the odds of infection in the 
baseline group ( l  .052 = odds of infection in the savannah area, see Table 
1 9.3 ) .  As we will see, this apparently inconsistent labell ing is because output 
from regression models is labelled in a uniform way . 

The remaining columns present ::: statistics, P-values and 95% confidence intervals 
corresponding to the model parameters. The values for area are exactly the same 
as those that would be obtained by following the procedures described in  Section 
1 6 .7  for the calculation of a 95% confidence interval for an odds ratio, and the 
associated Wald test. They wil l be explained in more detail in  the explanation of 
Table 1 9 . 5  below. 

The logistic regression model on a log scale 

As described in Chapter 1 6, confidence intervals for odds rat ios are derived by using 
the standard error of the log odds ratio to calculate a confidence in terval for the 
log odds ratio. The results are then anti logged to express them in terms of the 
original sca le. The same is true for logistic regression models; they are j/t1ed 
on a log scale. Table 1 9. 5  shows the two equations that define the logistic regres
sion model for the comparison of two exposure groups. The middle column 
shows the model for the odds of the outcome, as described above. Using the 
rules of logarithms ( see p.  1 56, Section 1 6 .5 ) ,  it follows that corresponding equa
tions on the log scale for the log of the odds of the outcome are as shown in the right
hand column. Note that as in the rest of the book al l logs are to the base e ( natural 
logarithms) un less they are explicitly denoted as logs to the base l 0 by log1 0 ( see 
Section 1 3 .2 ) .  

Table 1 9.5 Equations defining the logistic regression model for the comparison o f  two exposure groups. 

Exposure group Odds of outcome 

Exposed (group 1 )  Baseline odds x exposure OR 

Unexposed (group O) Baseline odds 

Log odds of outcome 

Log(baseline odds) + log(exposure OR) 

Log(baseline odds) 

Using the parameter names introduced earlier in this section, the logistic regres
sion model on the log scale can be written: 

log(Odds) = log(Baseline) + Iog(Exposure odds ratio )  
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In practice, we abbreviate it to: 

log(Odds) = Baseline + Exposure 

since i t  is clear from the context that output on the log scale refers to log odds and 
log odds ratios. Note that whereas the exposure effect on the odds ratio  scale is 
multiplicative, the exposure effect on the log scale is  additive. 

Example 1 9. 1 (continued) 
In this example, the model on the log scale is: 

log(Odds of mf infection) = Basel ine + Area 

where 
1 baseline i s  the log odds of infection in the savannah areas; and 
2 area is the log odds ratio comparing the odds of infection in rainforest areas with 

that in savannah areas. 
Table 1 9 .6  shows the results obtained on the log scale, for this model. We wil l  
explain each item in the table, and then discuss how the results relate to those on 
the odds ratio scale, shown in Table 1 9.4. 

Table 1 9.6 Logistic regression output ( log scale) for the association between microfi larial infection 
and area of residence. 

Area 

Constant 

Coefficient 

0.881 

0.051 1 

s.e. 

0 .1 1 8  

0.0854 

z 

7.487 

0.598 

P > lzl 

0.000 

0.550 

95% Cl 

0.650 to 1 . 1 1 2  

-0.1 1 6  to 0.2 1 9  

1 The two rows in the output correspond to the terms in the model; area i s  our 
exposure of interest, and as before the constant term corresponds to the baseline 
group. 

2 The first column gives the results for the regression coefficients (corresponding 
to the parameter estimates on a log scale) :  
(a )  For the row labelled 'area', this is the log odds ratio comparing rainforest 

with savannah. It agrees with what would be obtained if it were calculated 
directly from Table 1 9.3 ,  and with the value in Table 1 9 .4: 

log OR = log(2 .540/ l .052) = log(2.4 1 3 ) = 0.88 1 

(b )  For the row labelled 'constant', this is the log odds in the baseline group ( the 
group with exposure level 0), i .e. the log odds of microfilarial infection in 
the savannah: 
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log odds = log(28 l /267) = log( l .052) = 0.05 l I .  

3 The second column gives the standard error(s) of the regression coefficient( s ) .  In 
the simple example of a binary exposure variable, as we have here, the standard 
errors of the regression coefficients are exact ly the same as those derived using 
the formulae given in Chapter 1 6. Th us: 

(a) s .e . ( log OR comparing rainforest with savannah) is: 

J( l /d1 + l /h 1 + I /do +  I /ho ) =  J( l /54 1 + 1 /2 1 3  + 1 /28 1 + 1 /267) 

= 0. 1 1 8  

(b )  s .e.( log odds in savannah) is: 

J( l /do + I /  ho ) = J( I /28 1 + I /267) = 0 .0854 

4 The 95% confidence intervals for the regression coefficients in the last column 
are derived in the usual way. 

(a) For the log OR comparing rainforest with savannah, the 95% CI  is: 

0 .88 1 - ( 1 .96 x 0. 1 1 8 )  to 0 .88 1 + ( 1 .96 x 0 . 1 1 8 ) = 0.650 to 1 . 1 1 2  

(b)  For the log odds in the savannah, the 95% C I  is: 

0 .05 1 1 - ( 1 .96 x 0.0854) to 0 .05 1 1  + ( 1 .96 x 0.0854) = -0. 1 1 6 to 0 .2 1 9  

5 The z statistic i n  the area row of the third column is used to derive a Wald 

test (see Chapter 28 )  of the null hypothesis that the area coefficient = 0, i .e .  
that the exposure has no effect (s ince if log OR = 0, then OR must be equal to 
1 ) . This z statistic is simply the regression coefficient divided by its standard 
error: 

z = 0 .88 1 /0 . l 1 8  = 7.487 

6 The P-value in  the fourth column is derived from the ::: statistic in the usual 
manner ( see Table A 1 and Chapter 8) ,  and can be used to assess the strength of 
the evidence against the null hypothesis that the true (population) exposure 
effect is zero . Thus, the P-value of 0.000 (which should be interpreted as 
< 0 .00 1 )  for the log OR comparing rainforest with savannah ind icates that 
there is strong evidence against the null hypothesis that the odds of microfilarial 
infection are the same in the two areas. 

7 We are usually not interested in in the third and fourth columns (the z statistic 
and its P-value) for the constant row. However, for completeness, we will 
explain their meanings: 
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(a) The z statistic 1s the result of testing the nul l  hypothesis that the 
log odds of infect ion in the savannah areas are 0 (or, equivalently, that 
the odds of infection are 1 ) . This would happen i f  the risk of infection i n  
the savannah areas was 0 .5 ;  i n  other words i f  people l iving in  the savan
nah areas were equally l ikely to be infected as they were to be not 
infected. 

(b) The P-value of 0 .550 for the log odds in savannah areas indicates that 
there is  no evidence against this nul l  hypothesis. 

Relation between outputs on the ratio and log scales 

We will now explain the relationship between the two sets of outputs, since the 
results in  Table 1 9.4 (output on the original, or ratio, scale) are derived from 
the results in Table 1 9 .6  (output on the log scale). Once this is understood, it is  
rarely necessary to refer to the output displayed on the log scale: the most useful 
results are the odds ratios, confidence intervals and P-values d isplayed on the 
original scale, as in  Table 1 9.4. 
I In Table 1 9.4, the column labelled 'Odds Ratio' contains the exponentials 

(anti logs) of the logistic regression coefficients shown in Table 1 9  .6 .  Th us the 
OR comparing rainforest with savannah = exp (0 .88 1 )  = 2 .4 1 3 . 

2 The z statistics and P-values are derived from the log odds ratio and i ts standard 
error, and so are identical in the two tables. 

3 The 95% confidence intervals in Table 1 9 .4 are derived by anti logging 
(exponent iating) the confidence intervals on the log scale presented in 
Table 1 9.6 .  Thus the 95% CI for the OR comparing rainforest with savannah 
1s: 

95% CI = exp(0.650) to exp( l . 1 1 2) = 1 .9 1 6  to 3 .039 

This is  identical to the 95% CI calculated using the methods described in  Section 
1 6.7 :  

95% CI (OR) = OR/EF to OR x EF, where EF = exp[ l .96 x s .e . (  log OR)] 

Note that since the calculations are multipl icative: 

Odds ratio Upper confidence l imit 
Lower confidence l imi t  Odds ratio 

This can be a useful check on confidence limits presented in  tables in  published 
papers. 
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1 9 . 3  G E N E RA L  F O R M  O F  T H E  L O G I S T I C  R E G R E S S I O N  E Q U AT I O N  

We will now introduce the general form o f  the logistic regression model with 
several exposure variables, and explain how it corresponds to what we used above 
in the simple case when we are comparing two exposure groups, and therefore 
have a single exposure variable in our model. The general form of the logistic 
regression model is  similar to that for mul tiple regression (see Chapter 1 1 ) :  

The difference is  that we are modelling a transformation of the outcome variable, 
namely the log of the odds of the outcome. The quantity on the right-hand side of 
the equation is  known as the linear predictor of the log odds of the outcome, given 
the particular value of the p exposure variables x1 to x,, . The /3's are the regression 

coefficients associated with the p exposure variables. 
The transformation of the probability, or risk, n of the outcome into the 

log odds is  known as the logit function: 

logit(n) = log (-n
-) 

1 - n 

and the name logistic is derived from this. Recall from Section 1 4.6  (Table 1 4.2)  
that while probabil i t ies must l ie between 0 and I ,  odds can take any value between 
0 and infini ty (oo) .  The log odds are not constrained at al l ;  they can take any value 
between -oo and oo. 

We will now show how the general form of the logistic regression model 
corresponds to the logistic regression model we used in Section 1 9.2  for comparing 
two exposure groups. The general form for comparing two exposure groups is: 

log odds of outcome = /30 + /31 x 1  

where x1 ( the exposure variable) equals I for those in the exposed group and 0 for 
those in the unexposed group. Table 1 9 .7  shows the value of the log odds predicted 

Table 1 9.7  Log odds of the outcome according to exposure group, as calculated from the linear predictor in the 

logistic regression equation. 

Exposure group 

Exposed (x1 = 1 )  

U nexposed (xi = O) 

Log odds of outcome, 

predicted from model 

fJo + f31 x 1 = fJo + f31 
fJo + f31 x 0 = fJo 

Log odds of outcome, in terms of the 

parameter names 

log(Baseline odds) + log(Exposure odds ratio) 

log(Baseline odds) 
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from this model in each of the two exposure groups, together with the log odds 
expressed in terms of the parameter names, as in Section 1 9  .2. 

We can see that the first regression coefficient, f30, corresponds to the 
log odds in  the unexposed (baseline) group. We wil l now show how the 
other regression coefficient ,  /31 , corresponds to the log of the exposure odds 
ratio. Since: 

.E OR 
odds in exposed group 

xposure = ---.--------odds 111 unexposed group 

it follows from the rules of logarithms (see p. 1 56) that :  

J og OR = log(odds in exposed group) - log(odds in  unexposed group) 

Putting the values predicted from the logistic regression equation (shown in  Table 
1 9. 7 )  into this equation gives: 

The equivalent model on the ratio scale is: 

Odds of disease = exp(/30 + /3 1 x1 ) = exp(/30) x exp(/3 1 x1 ) 

In  this multiplicative model exp(/30) corresponds to the odds of disease 111 the 
baseline group, and exp(/31 ) to the exposure odds ratio. Table 1 9 . 8  shows how 
this model corresponds to the model shown in Table 1 9 . I .  

Table 1 9.8 Odds of outcome according to exposure group, as calculated from the linear predictor in the logistic 

regression equation. 

Exposure group 

Exposed (x1 = 1 )  

Unexposed (x1 = 0) 

Odds of outcome, predicted from Odds of outcome, in terms of the parameter 

model names 

exp(,80 ) x exp(/31 ) Baseline odds x Exposure odds ratio 

exp(,80 ) Baseline odds 

1 9 . 4  L O G I S T I C  R E G R E S S I O N  F O R  C O M P A R I N G  M O R E  T H A N  T W O  
E X P O S U R E  G R O U P S  

We now consider logistic regression models for categorical exposure variables with 
more than two levels. To examine the effect of categorical variables in  logistic and 
other regression models, we look at the effect of each level compared to a baseline 

group. When the exposure is an ordered categorical variable, it may also be useful 
to examine the average change in the log odds per exposure group, as described in 
Section 1 9. 5 .  



1 9.4 Logistic regression for comparing more than two exposure groups 1 99 

Table 1 9 .9 Association between age group and microfilarial infection in the onchocerciasis study. 

Age Coded Microfilarial infection 
group value in Odds of Odds ratio compared to the 

(years) dataset Yes No infection baseline group 

5-9 0 46 1 56 46/1 56 = 0.295 1 

1 0-1 9 1 99 1 1 9 99/1 1 9  = 0 832 0 .832/0.295 = 2 .821 

20-39 2 299 1 2 5  299/1 25 = 2 .392 2392/0.295 = 8 . 1 1 2  

2 40 3 378 80 378/80 = 4. 725 4.725/0.295 = 1 6 .02 

Total 822 480 

Example 1 9.2 
In the onchocerciasis study, introduced in Example 1 9 . 1 ,  subjects were classified 
into four age groups: 5-9, 1 0- 1 9, 20-39 and 2 40 years. Table 1 9 .9  shows the 
association between age group and microfilarial infection.  The odds of infection 
increased markedly with increasing age. A chi-squared test for association in this 
table gives P < 0.00 1 ,  so there is  clear evidence of an association between age 
group and infection . We chose the 5-9 year age group as the baseline exposure 
group, because its coded value in the dataset is zero, and calculated odds ratios for 
each non-baseline group relat ive to the baseline group. 

The corresponding logistic regression model uses this same approach; the effect 
of each non-baseline age group is expressed in terms of the odds ratio comparing it 
with the baseline. The parameters of the model, on both the odds and log odds 
scales, are shown in  Table 1 9 . 1 0. 

Table 1 9 . 1 0  Odds and log odds of the outcome in terms of the parameters of a logistic 

regression model comparing four age groups. 

Age group 

0 (5-9 years) 

1 (1 0-1 9 years) 

2 (20-39 years) 

3 (2'. 40 years) 

Odds of infection 

Baseline 

Baseline x Agegrp( 1 )  

Baseline x Agegrp(2)  

Baseline x Agegrp(3 )  

Log odds o f  infection 

Log(Baseline) 

Log(Baseline) + Log(Agegrp(1 )) 

Log(Baseline) + Log(Agegrp(2 ) )  

Log(Baseline) + Log(Agegrp(3 ) )  

Here, Agegrp( l )  is  the odds ratio (or, on the log scale, the log odds ratio) 
comparing group 1 ( 1 0- 1 9  years) with group 0 (5-9 years, the baseline group), 
and so on.  This regression model has four parameters: 
1 the odds of infection in the 5-9 year group ( the baseline group); and 
2 the three odds ratios comparing the non-basel ine groups with the baseline. 
Using the notation i ntroduced in  Section 1 9.2, the four equations for the odds that 
define the model in  Table 1 9. 1 0  can be written in abbreviated form as: 

Odds = Baseline x Agegrp 

or on a log scale, as: 
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log (Odds) = Baseline + Agegrp 

The effect of categorical variables is modelled in logistic and other regress10n 
models by using indicator variables, which are created automatically by most 
statistical packages when an exposure variable is  defined as categorical .  This is 
explained further in Box 1 9 . 1 .  Output from this model (expressed on the odds 
ratio scale, with the constant term omitted) is shown in Table 1 9 . 1 1 .  

Table 1 9. 1 1  Logistic regression output (odds ratio scale) for the association 

between microfilarial infection and age group. 

Odds ratio z P > lzl 95% Cl 

agegrp( 1 )  2.821 4.802 0.000 1 .848 to 4.308 

agegrp(2) 8.1 1 2  1 0.534 0.000 5.495 to 1 1 .98 

agegrp(3) 1 6.024 1 3 .332 0.000 1 0.658 to 24.09 

B O X  1 9 . 1  U S E  O F  I N D I CA T O R  V A R I A B L E S  I N  R E G R E S S I O N  
M O D E L S  

To model the effect o f  a n  exposure with more than two categories, we 
estimate the odds ratio for each non-baseline group compared to the base
line. In the logistic regression equation, we represent the exposure by a set of 
indicator variables (variables which take only the values 0 and 1 )  representing 
each non-basel ine value of the exposure variable. The regression coefficients 
for these i nd icator variables are the correspondi ng ( log) odds ratios. For 
example, to estimate the odds ratios comparing the 1 0- 1 9, 20-39 and 
?: 40 year groups with the 5-9 year group, we create three indicator variables 
which we will call ageind 1 ,  ageind2 and ageind3 ( the name is not important) .  
The table below shows the value of these indicator variables according to age 
group. 

Value of indicator variables for use in logistic regression of the 

association between microfilarial infection and age group: 

Age group ageind1 ageind2 ageind3 

0 (5-9 years) 0 0 0 

1 (1 0-1 9 years) 1 0 0 

2 (20-29 years) 0 1 0 

3 (2: 40 years) 0 0 

All three of these indicator variables (but not the original variable) are 
then included in a logistic regression model .  Most statist ical packages create 
the indicator variables automatically when the original variable is  declared 
as categorical .  
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The P-values for the three indicator variables (corresponding to the non-baseli ne 
age groups) can be used to test the nul l  hypotheses that there is no difference in 
odds of the outcome between the individual non-basel ine exposure groups and 
the baseline group.  However, these are not usually of interest : we need a test ,  
analogous to the x2 test  for a table with four rows and two columns, of the 
general nul l  hypothesis that there i s  no association between age group and 
infection. We wil l see how to test such null  hypotheses in  regression models in 
Chapter 29, and in  the next section we address the special case when the 
categorical variable i s  ordered, as is the case here. It i s  usually a mistake to 
conclude that there i s  a difference between one exposure group and the rest 
based on a particular (smal l )  ?-value corresponding to one of a set of indicator 
variables. 

1 9 . 5  L O G I S T I C  R E G R E S S I O N  F O R  O R D E R E D  A N D  C O N T I N U O U S  
E X P O S U R E  V A R I A B L E S  

Unti l  now, we have considered logistic regression models for binary o r  categorical 
exposure variables. For b inary variables, logistic regression estimates the odds 
ratio comparing the two exposure groups, while for categorical variables we have 
seen how to estimate odds ratios for each non-baseline group compared to the 
baseline. This approach does not take account of ordering of the exposure vari
able. For example, we did not use the fact that subjects aged ;::: 40 years are older 
than those aged 20-39 years, who in turn are older than those aged 1 0- 1 9  years 
and so on.  

Example 1 9.3  
The odds of microfilarial infection in each age group in the  onchocerciasis dataset 
are shown in Table 1 9 .9 in Section 1 9 .4, and are displayed in Figure 1 9 . 1 .  We do 
not have a straight l ine; the slope of the l ine increases with i ncreasing age group. In 
other words, this i ncrease in the odds of infection with increasing age does not 
appear to be constant .  

However, Figure 1 9 .2 shows that there is an approximately l inear increase in  the 
log odds of infection with increasing age group. This log-linear increase means that 
we are able to express the association between age and the log odds of microfilarial 
infection by a single l inear term (as described below) rather than by a series of 
indicator variables representing the different groups. 

Relation with l inear regression models 

Logist ic regression models can be used to estimate the most likely value of the 
increase in  log odds per age group, assuming that the increase is the same in each 
age group. (We wil l  define the meaning of 'most l ikely' more precisely in Chapter 
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Fig. 19 . 1  Odds of microfilarial infection according to age group for the onchocerciasis data. 
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28 . )  The model is analogous to the simple l inear regression model described in 
Chapter 1 1 . I f  we assume that :  

then the intercept {30 is the value of y when x = 0, and the slope {3 1  represents the 
increase in y when x increases by I .  Logistic regression models assume that : 

log odds = {30 + {31 x. 

so that the intercept {30 is the value of the log odds when x = 0, and the slope 
{31 represents the increase in log odds when x increases by I .  We wil l  use the 
notation 

log odds = Baseline + [X] 

where the square brackets indicate our assumption that variable X has a l inear 
effect on the log odds of the outcome. For the onchocerciasis data, our model is 

log odds = Baseline + [Agegrp] 

Example 7 9.3 (continued) 
Table I 9. l 2(a) shows logistic regression output for the model assuming a l inear 
effect of logistic regression on the log odds of microfilarial infection. The esti
mated increase in log odds for every unit increase in age group is 0.930 (95% 
CI = 0 . 805 to 1 .055) .  This corresponds to an odds ratio per group of 2 . 534 (95% 
CI = 2.236 to 2 .87 1 ;  see output in Table 1 9 . 1 2b) .  The constant term corresponds 
to the estimated log odds of microfilarial infection in age group 0 ( 5-9 years, 
log odds = - 1 . 1 1 5 ) ,  assuming a linear relation between age group and the log odds 
of infection. It does not therefore numerically equal the baseline term in the 

Table 1 9. 1 2  Logistic regression output for the linear association between the log odds of 

microfilarial infection and age group (data in Table 1 9.9). 

(a) Output on log scale. 

Coefficient s.e. z P > lzl 95% Cl 

Age group 0.930 0.0638 1 4.587 0.000 0.805 to 1 .055 
Constant -1 . 1 1 5  0.1 27 -8.782 0.000 -1 .364 to -0.866 

(b) Output on ratio scale. 

Odds ratio z P > tz l 95% Cl 

Age group 2 .534 1 4.587 0.000 2.236 to 2.871 
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Tab le  1 9 . 13  Predicted log odds in each age group, derived from a logistic regression model assuming a linear 

relationship between the log odds of microfilarial infection and age group. 

Age group 

0 

1 

2 

3 

Logistic regression equation 

log odds = constant + 0 x age group 

log odds = constant + 1 x age group 

log odds = constant + 2 x age group 

log odds = constant + 3 x age group 

Predicted log odds 

- 1 . 1 1 5  + 0.930 x 0 = -1 . 1 1 5  

- 1 . 1 1 5 + 0.930 x 1  = -0.1 85 

- 1 . 1 1 5 + 0.930 x 2 =  0.745 

- 1 . 1 1 5  + 0.930 x 3 = 1 .674 

regression equation when age is included as a categorical variable, as described in 
Section 1 9  .4. 

Substitution of the estimated regression coefficients into the logistic regression 
equation gives the predicted log odds in each age group. These are shown in Table 
1 9. 1 3 . Figure 1 9 . 3  compares these predicted log odds from logistic regression with 
the observed log odds i n  each group. This shows that the l inear assumption gives a 
good approximation to the observed log odds in each group. Section 29 .6 des
cribes how to test such l inear assumptions. 

• Observed log odds -- Predicted log odds 
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Fig. 1 9 .3 Observed log odds in  each age group (circles) and predicted log odds from logistic regression 

(triangles, connected by l ine). 
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models 

2 0 . 1  I N T R O D U C T I O N  

20.4 Regression analysis of risk ratios 

20.5 Outcomes with more than two 

levels 

M ultinomial logistic regression 

Ordinal logistic regression 

Further reading 

In the last chapter we introduced the principles of logistic regression models, and 
described how to use logistic regression to examine the effect of a single exposure 
variable. We now describe how these models can be extended to control for the 
confounding effects of one or more additional variables. In addition, we briefly 
cover regression model l ing for risk ratios, rather than odds ratios, and for out
comes with more than two levels . 

2 0 . 2  C O N T R O L L I N G  F O R  C O N F O U N D I N G  U S I N G  L O G I S T I C  
R E G R E S S I O N  

I n  Chapter 1 8  we saw how t o  control for a confounding variable by d ividing the 
sample into strata defined by levels of the confounder, and examining the effect of 
the exposure in each stratum. We then used the Mantel-Haenszel method to 
combine the odds ratios from each stratum into an overall summary odds ratio .  
We also explained how this approach assumes that effect modification ( inter
action) is not present, i .e .  that the true odds ratio comparing exposed with 
unexposed ind ividuals is the same in  each stratum. We now see how making the 
same assumption allows us to control for confounding using logistic regression.  

We wil l explain this in the context of the onchocerciasis dataset used throughout 
Chapter 1 9 . Recal l  that we found strong associations of both area of residence 
and of age group with the odds of microfilarial (mf) infection. If the age d istribu
t ions differ in the two types of area, then it is possible that age is a confounding 
variable for the association between area and mf infection. We wil l contro l  for 
this possible confounding by fitting a logistic regression model, which includes 
the effects of both area and age group. We will start with hypothetical data, 
constructed so that i t  is easy to see how this logist ic regression model works. 
We wil l  then explain how to interpret the output when we apply the model to the 
real data. 
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Example 20. 1 (hypothetical data) 
Table 20. 1 shows hypothetical data for the odds of mf infection according to area 
of residence (exposure) and age group. You can see that: 
1 Table 20. 1 (a) shows that the exposure effect is exactly the same in each of the 

age groups; the age-specific odds ratios comparing exposed with unexposed 
individuals are all equal to 3 .0. (Note also that when the age groups are 
combined, the crude odds ratio is 1 . 86/0.92 = 2.02, which is considerably less 
than the individual age-specific odds ratios of 3, confirming that age group 
confounds the association between mf infection and area. )  

2 Table 20. l (b )  shows that the age group effect i s  exactly the same in  each area 
of residence. For example, the odds ratio comparing age group 1 with age group 
0 in the savannah areas is 0 .5/0 .2 = 2.5 ,  the same as the odds ratio in the forest 
areas ( l . 5/0.6  = 2 .5 ) .  Similarly, the odds ratio comparing age group 2 with age 
group 0 are J O  in each area, and the odds rat ios comparing age group 3 with 
age group 0 are 1 5  in each area. 

Table 20.1 Hypothetical data for the odds of mf infection, according to area of residence and age group. 

(a) Crude data, and odds of disease in each group (d = number infected and h = number uninfected), plus odds 

ratios for area in each age-group and overall . 

Savannah areas (Unexposed) Rainforest areas (Exposed) 

Age group dlh Odds dlh Odds 

0 20/1 00 0.2 30/50 0.6 

1 40/80 0.5 60/40 1 .5 

2 80/40 2.0 60/1 0 6.0 

3 90/30 3.0 45/5 9.0 

All age groups combined 230/250 0.92 1 95/1 05 1 .86 

(b) Age group odds ratios (comparing age groups 1, 2 and 3 with age group 0), in 

each type of area of residence. 

Age group 

0 

2 

3 

Odds ratios for age group effects 

Savannah areas 

1 .0 

2 .5 (= 0.5/0.2) 

1 0.0 (= 2.0/0.2) 

1 5.0 (= 3 .0/0.2) 

Rainforest areas 

1 .0 

2 .5  (= 1 .5/0.6) 

1 0.0 (= 6.0/0.6) 

1 5.0  (= 9.0/0.6) 

Odds ratio for 

area effect 

3.0 

3.0 

3.0 

3 .0  

2 .02 

These two facts mean that we can exactly express the odds of mf infection in  the 
eight area-age subgroups in terms of the following five parameters, as shown in  
Table 20.2(a) :  
1 0.2 :  the odds of mf infection at the baseline values of both area and age group; 
2 3 .0 :  the area odds ratio comparing the odds of infection in rainforest areas 

compared to savannah areas; and 
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3 2 .5 ,  1 0 .0 and 1 5 .0 :  the three age odds ratios comparing age groups I ,  2 and 3 
with age group 0 ( respectively) .  

Table 20.2(b) shows the corresponding equations in  terms of the parameter names; 
these follow the convention we introduced in  Chapter 1 9 . These equations define 
the logistic regression model for the effects of area and age group on the odds of m/ 
infection. As described in Chapter 1 9 , such a logistic regression model can be 
abbreviated to :  

Odds = Baseline x Area x Agegrp 

As explained in Section 1 9.2 ,  it is a multiplicative model for the joint effects of area 
and age group. Note that the Basel ine parameter now refers to the odds of the 
disease at the baseline of both variables. This model assumes that the odds ratio for 
area is the same in each age group and that the odds ratios for age group are the same 
in each area, i .e .  that there is no interaction between the effects of area and age group. 

Table 20.2 Odds of mf infection by area and age group, expressed in terms of the parameters of 

the logistic regression model: Odds = Baseline x Area x Age group. 

(a) Expressed in  terms of the parameter values. 

Odds of mf infection 

Age group Savannah areas (Unexposed) Rainforest areas (Exposed) 

0 0.2 = 0.2 0.6 = 0.2 x 3.0 

0.5 = 0.2 x 2.5 1 .5 = 0.2 x 3.0 x 2 .5  

2 2 .0 = 0.2 x 1 0.0  6.0 = 0.2 x 3.0 x 1 0.0 

3 3.0 = 0.2 x 1 5.0 9.0 = 0.2 x 3.0 x 1 5 .0 

(b) Expressed in  terms of the parameter names. 

Age group 

0 

2 

3 

Odds of mf infection 

Savannah areas (Unexposed) 

Baseline 

Baseline x Agegrp(1 )  

Baseline x Agegrp(2) 

Baseline x Agegrp(3) 

Rainforest areas (Exposed) 

Baseline x Area 

Baseline x Area x Agegrp(1 )  

Baseline x Area x Agegrp(2) 

Baseline x Area x Agegrp{3) 

(c) Expressed on a log scale, in terms of the parameter names. 

Age group 

0 

2 

3 

Log odds of mf infection 

Savannah areas (Unexposed) 

log(Baseline) 

log(Baseline) + log(Agegrp(1 ) )  

log(Baseline) + log(Agegrp(2) ) 

log(Baseline) + log(Agegrp(3) ) 

Rainforest areas (Exposed) 

log(Baseline) + log(Area) 

log(Baseline) + log(Area) + log(Agegrp(1 ) )  

log(Baseline) + log(Area) + log(Agegrp(2) ) 

log(Baseline) + log(Area) + log(Agegrp(3) ) 
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As explained in Chapter 1 9, the calculations to derive confidence in tervals and 
P-val ues for the parameters of logistic regression models are done on the log scale, 
in which case the basel ine parameter refers to the log odds in the baseline group, 
and the other parameters refer to log odds ratios. The effects of the exposure 
variables are additive on the log scale (as described in Section 1 9 .2) .  Table 20.2(c) 
shows the equations for the log odds in each of the area-age subgroups. The 
corresponding logistic regression model, defined by these eight equations, is :  

log(Odds) = log(Baseline) + log(Exposure) + log(Age) 

Example 20.2 (real data) 
In  our hypothetical example, we were able to precisely express the odds in  the eight 
sub-groups in the table in terms of five parameters, because we created the data so 
that the effect of area was exactly the same in each age group, and the effect of age 
exactly the same in savannah and rainforest areas. Of course, sampling variation 
means that real data is  never this neat, even if the model proposed is correct . Table 
20. 3  shows the odds of 111/infection in the eight area-age subgroups, using the data 
that were actually observed in the onchocerciasis study. 

Tab l e  20.3 Odds of microfilarial infection and odds ratios comparing individuals l iv ing in  

forest areas with those living in savannah areas, separately for each age group. 

Area of residence 

Age group Savannah Rainforest Odds ratio for area 

0 (5-9 years) 1 6177 = 0.208 30179 = 0.380 1 .828 

1 (1 0-1 9 years) 22/50 = 0.440 77/69 = 1 . 1 1 6  2.536 

2 (20-39 years) 1 23/85 = 1 .447 1 76/40 = 4.400 3.041 

3 (::'.'. 40 years) 1 20/55 = 2. 1 82 258/25 = 1 0.32 4.730 

From the previous chapter (Table 1 9.4) we know that the crude odds ratio for 
area is 2 .4 1 3  ( the odds ratio which does not take into account the effects of age 
group, or any other variables). We can see in Table 20.3 that i n  three out of the 
four age groups the stratum-specific odds ratios for the effect of area of residence 
are larger than this . If we use Mantel-Haenszel methods (see Chapter 1 8) to 
estimate the effect of area of residence control l ing for age group, we obtain an 
estimated odds ratio of 3 .039 (95% CI = 2 .3 1 0  to 3 .999) .  This is  noticeably larger 
than the crude odds ratio of 2 .4 1 3 . 

As in the hypothetical example above, we can express the odds of mf infection in 
the rainforest areas in  terms of the odds ratios for the effect of area of residence in 
each age group (Table 20.4a) .  Alternatively, we can express the odds of mf 
infection in terms of the odds ratios for each of the three age groups compared 
to age group 0 (Table 20.4b) . Note that (in contrast to the hypothetical example 
above) these sets of odds ratios are not exactly the same in  each area. This means 
that we cannot calculate the parameter estimates directly from the raw data, as we 
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Table 20.4 Odds of mf infection, according to area of residence and age 

group, for the data observed in the onchocerciasis study. 

(a) With the odds in the rainforest areas expressed in terms of the age-specific 

odds ratios for the association between area and infection. 

Area 

Age group Savannah Rainforest 

O (5-9 years) 0.208 0.208 x 1 .828 

1 (1 0-1 9 years) 0.440 0.440 x 2.536 

2 (20-39 years) 1 .447 1 .447 x 3.041 

3 ( 2: 40 years) 2 . 1 82 2 . 1 82 x 4.730 

(b) With the odds of infection in age groups 2 to 4 expressed in terms of the 

area-specific odds ratios for the association between age group and infection. 

Area 

Age group Savannah Rainforest 

0 (5-9 years) 0.208 0.380 

1 (1 0-1 9 years) 0.208 x 2.1 1 8  0.380 x 2.939 

2 (20-39 years) 0.208 x 6.964 0.380 x 1 1 .59 

3 (2: 40 years) 0.208 x 1 0.50 0.380 x 27. 1 8 

could for the simpler examples in Chapter 1 9. Instead we use a computer package 
to fit the model and to estimate the most likely values for the effect of area 
controll ing for age group, and the effect of age group controll ing for area, on the 
basis of the assumption that there is no interaction between the effects of  
the  two variables. The meaning of 'most l ikely' is explained more precisely 111 
Chapter 28 . 

The computer output from this model (on the odds ratio scale) is shown 111 
Table 20. 5 .  The estimated odds ratio of 3 .083 (95% CI = 2 .354 to 4.038) for area 
control l ing for age group is very close to that derived using the Mantel-Haenszel 
method (OR 3 .039, 95% CJ = 2 .3 1 0  to 3 .999), and again is noticeably larger than 

Table 20.5 Logistic regression output for the model for mf infection, including both 

area of residence and age group. 

Odds ratio z P > lzl 95% C l  

Area 3.083 8.1 81 0.000 2.354 to 4.038 
Agegrp(1 ) 2.599 4.301 0.000 1 .682 to 4.0 1 6  
Agegrp(2) 9.765 1 0.944 0.000 6.493 to 1 4.69 

Agegrp(3) 1 7.64 1 3 .295 0.000 1 1 .56 to 26.93 

Constant* 0 . 147 - 9.741 0.000 0. 1 00 to 0.2 1 7  

*Constant (baseline odds) = estimated odds o f  111/ infection for 5-9 year 

olds l iving in the savannah areas, assuming no interaction between the effects 

of area and age group. 
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Fig. 20.1 Observed odds of mf infection in the eight area-age subgroups, together with l ines showing the 

predicted odds from the logistic regression model defined in Table 20.2{b). 

the crude odds ratio of 2.4 1 3 . Thus the confounding effect of age meant that the 
crude odds ratio for area was too small .  

We can use the parameter estimates shown in  Table 20.5 to calculate the predicted 
odds in each group, using the equations for the odds in this logistic regression 
model, shown in Table 20.2(b) .  These calculations are shown in Table 20.6. 
Figure 20. l compares the observed odds of n�l infection in the eight area
age subgroups (shown in Table 20. 3 )  with the predicted odds from the logistic 
regression model (shown by separate l ines for the savannah and rainforest) .  The 
odds are plotted on a log scale; this means that, since the model assumes that the 
area odds ratios are the same in each age group, the two l ines showing the predicted 
odds are parallel. 

Table 20.6 Odds of mf infection by area and age group, as estimated from the logistic 
regression model. 

Age group 

0 (5-9 years) 
1 (1 0-1 9 years) 
2 (20-39 years) 
3 (='.'. 40 years) 

Odds of mf infection 

Savannah areas 

0.1 47 

0 . 1 47 x 2 .599 = 0.382 

0 . 1 47 x 9.765 = 1 .435 

0 . 147 x 1 7 .64 = 2 .593 

Rainforest areas 

0. 1 47 x 3 .083 = 0.453 

0 . 1 47 x 3 .083 x 2 . 599 = 1 . 1 78 

0. 1 47 x 3 .083 x 9.765 = 4.426 
0. 1 47 x 3 .083 x 1 7 .64 = 7 .993 
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2 0 . 3  T E S T I N G  F O R  I N T E RA C T I O N ,  A N D  M O R E  C O M P L E X  L O G I S T I C  
R E G R E S S I O N  M O D E L S  

We have explained the interpretation of logistic regression models for one and two 
variables in  great detai l .  The extension to models for more than two variables is  
straightforward , and the in terpretation of results fol lows the same principles. 
Regression modell ing, including hypothesis testing, examining interaction be
tween variables and modell ing dose-response relationships, is  described in more 
detail i n  Chapter 29.  For now we note two important points: 
1 In the logistic regression model for two variables (area and age group) described 

above, we assumed that the effect of each was the same regardless of the level of 
the other. In other words, we assumed that there was no interaction between the 
effects of the two variables. In teraction (also known as effect modification) was 
described in Chapter 1 8 . I t  is  straightforward to use regression model l ing to 
examine this; see Section 29 .5 for details. 

2 Similarly, when we include three or more variables in  a logistic regression model, 
we assume that there is no in teraction between any of them. On the basis of this 
assumption, we estimate the effect of each, controlling for the effect of all the 
others. 

More information about logistic regression models may be found in  Hosmer and 
Lemeshow (2000) .  

2 0 . 4  R E G R E S S I O N  A N A LY S I S  OF R I S K  R AT I O S  

Most regression analyses o f  binary outcomes are conducted using odds ratios: 
partly because of the mathematical advantages of analyses based on odds ratios 
(see Section 1 6.6 )  and partly because computer software to do logistic regression 
analyses is  so widely available. However, it is  straightforward to do regression 
analyses of risk ratios, if it is  considered important to express exposure effects in  
that  way. 

This is carried out by relating the effect of the exposure variable(s) to the log of the 
risk of the outcome rather than the log of the odds, using a statistical software 
package that allows the user to fit generalized linear models (see Chapter 29) for a 
range of outcome distributions and a range of what are known as link functions. For 
logistic regression the outcome variable is  assumed to have a binomial d istribution 
(see Chapter 1 5) and the link function is the logit function logit(7r) = log[K /( l - 7r)] 
(see Section 1 9  . 3 ) .  To model exposure effects as risk rat ios i nstead of odds ratios, we 
simply specify a log l ink function ( log 7r) instead of a logit l ink function . The 
outcome distribution is sti l l  binomial . The model is :  

log (risk of outcome) = {30 + {31 xi + {32x2 + . . .  + f3pxP 
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I f  the outcome is rare then odds ratios are approximately the same as risk ratios 
(see Section 1 6.6)  and so the choice of odds ratio or risk ratio as the measure of 
exposure effect is unimportant. When the outcome is common,  the two measures 
are different, and as stated in  Section 1 6.6, i t  is important that odds ratios are not 
misinterpreted as risk ratios. The problem with the regression analysis of risk 
ratios is  that when the outcome is common, it can prove difficult to fit models 
based on risk ratios, because they are constrained (see Section 1 6.6) ;  this means 
that computer model-fitt ing routines often fail to produce results . Furthermore, 
exposure effects will differ depending on whether the presence or absence of the 
outcome event is  considered as the outcome. For these reasons, i t  is l ikely that 
logistic regression will continue to be the method of choice for the regression 
analysis of binary outcome variables. 

2 0 . 5  O U T C O M E S  W I T H  M O R E  T H A N  TWO L E V E L S  

Finally, we briefly describe extensions to logistic regression that may be used for 
categorical outcomes with more than two categories. In Chapter 2 we distin
guished between categorical variables such as ethnic group, for which there is no 
natural ordering of the categories, and ordered categorical variables such as social 
class, in which the different categories, though non-numerical, have a natural 
ordering. We will briefly introduce the regression models appropriate for each of 
these types of outcome variable. We will denote the outcome variable by y, and 
assume that y has k possible categories. 

Multinomial logistic regression 

Multinomial logistic regression, also known as polychotomous logistic regression, 

extends logistic regression by estimating the effect of one or more exposure 
variables on the probabil ity that the outcome is in a particular category. For 
example, in  a study of risk factors for asthma the outcome might be defined as no 
asthma, al lergic asthma and non-allergic asthma. One of the outcome levels is  
chosen as the comparison level, and (k - 1 )  regression coefficients, corresponding 
to each other outcome level, are estimated for each exposure variable in the 
regression model. If there are only two outcome levels the model is identical to 
standard logistic regression. However, when the outcome has more than two levels, 
interpretation of the regression coefficients is less straightforward than for logistic 
regression, because the estimated effect of an exposure variable is measured by the 
combined effects of (k - 1 )  regression coefficients. 

Ordinal logistic regression 

Ordinal logistic regression is an extension of logistic regression which is appropri
ate when the outcome variable is  ordered categorical. For example, in a study of 
risk factors for malnutrition the outcome might be classified as severe, modera te, 
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mild, or no malnutrit ion. The most commonly used type of model is the propor

tional odds model, whose parameters represent the exposure odds ratios for being 
in  the highest ) categories compared to the lowest (k - j) categories. For example, 
if there were four outcome categories and a single exposure variable, then the 
exposure odds ratio would represent the combined comparison of outcome: 
category 4 with categories 3 ,  2 and I ,  categories 4 and 3 with categories 2 and I ,  
and categories 4, 3 and 2 with category I .  I t  is  assumed that the effect of exposure 
is the same for all such splits of the categories of the outcome variable. Some 
statistical software packages provide tests of this assumption, others do not .  

Other, less commonly used models for ordered categorical outcome variables 
i nclude the continuation ratio model and the stereotype model. 

Further reading 

Regression models for categorical variables with more than two levels are de
scribed by Agresti ( 1 996) .  Models for ordered categorical outcome variables have 
been reviewed by Armstrong and Sloan ( 1 989), and Ananth and Kleinbaum 
( 1 997) .  
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2 1 . 1  I N T R O D U C T I O N  

In  this chapter we introduce methods fo r  studies i n  which we have binary outcome 
observations that are matched or paired in some way. The two main reasons why 
matching occurs are :  
1 When the outcome is observed on the same individual on two separate occa

sions, under different exposure (or treatment) circumstances, or using two 
differen t  methods. 

2 The study has used a matched design in selecting ind ividuals. This mainly occurs 
with case-control studies; each case (subjects with the d isease) is matched with 
one or more controls (subjects without the disease) ,  deliberately chosen to have 
the same values for major confounding variables. For example, controls might 
be selected because they are of similar age to a case, or because they l ive in the 
same neighbourhood as the case. We will discuss case-contro l  studies in more 
detail in Chapter 34, where we wil l see that matched designs often have few 
advantages, and may have serious disadvantages, compared to unmatched 
designs. I t  is also very occasionally used in clinical trials, for example in a trial 
comparing two treatments for an eye condi tion, the two treatments may be 
randomly assigned to the left and right eyes of each patient. 

It is  essential that the matching be allowed for in the analysis of such studies. 

2 1 . 2  C O M PA R I S O N  O F  TWO P R O P O R T I O N S :  P A I R E D  C A S E  

Example 2 1 . 1 
Consider the results of an experiment to compare the Bell and Kato-Katz methods 
for detecti ng Schisto.soma mansoni eggs in  faeces in which two subsamples from each 
of 3 1 5  specimens were analysed, one by each method. Here, the exposure is the type 
of method, and the outcome is the test resul t .  The correct way to analyse such data is  
to consider the results of each pair of subsamples. For any pair there are four 
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Table 2 1 . 1  Possible results when a pair o f  subsamples i s  tested using two 

methods for detecting Schistosoma mansoni eggs. 

Both tests positive 

Both tests negative 

Bell positive, Kato-Katz negative 

Kato-Katz positive, Bell negative 

Notation 

s 

Description 

Concordant pairs 

Discordant pairs 

possible outcomes, as shown in Table 2 1 . 1 .  The results for each of the 3 1 5  specimens 
(pairs of subsamples) are shown in Table 2 I .2(a) .  Note that it would be incorrect to 
arrange the data as in Table 2 1 .2(b) and to apply the standard chi-squared test, as 
this would take no account of the paired nature of the data, namely that it was the 
same 3 1 5  specimens examined with each method, and not 630 different  ones. 

One hundred and eighty-four specimens were posit ive with both methods and 63 
were negative with both . These 247 specimens ( the concordant pairs; see Table 2 1 .  I )  
therefore give us no information about which of the two methods is better at 
detecting S. mansoni eggs. The information we require is entirely contained in the 
68 specimens for which the methods did not agree ( the discordant pairs). Of these, 54 
were positive with the Bell method only, compared to 1 4  positive with the Kato
Katz method only. 

Table 2 1 .2 Comparison of Be l l  and Kato-Katz methods for detecting Schistosoma mansoni eggs in faeces. The 

same 3 1 5  specimens were examined using each method. Data from Sleigh et al. (1 982) Transactions of the Royal 
Society of Tropical Medicine and Hygiene 76: 403-6 (with permission). 

(a) Correct layout. (b) Incorrect layout. 

Kato-Katz Results 

+ Total + Total 

+ 1 84 54(r) 238 Bell 238 77 31 5 
Bel l 

1 4(s) 63 77 Kato-Katz 1 98 1 1 7  3 1 5 

Total 1 98 1 1 7  3 1 5  Total 436 1 94 630 

The proportions of specimens found positive with the two methods were 238/3 1 5  
(0 . 756) using the Bell method and 1 98/3 1 5  (0 .629) using the Kato-Katz method . 
The difference between the proportions was therefore 0. 1 270. This difference can 
also be calculated from the numbers of discordant pairs, r and s, and the total 
number of pa irs, 11: 

Difference between paired proportions = 
r - 5, 

n 
.j(r + s) 

s .e . (d ifference) = --
n 
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In this example, the difference between the paired proportions is (r - s)/n = 
(54 - 1 4)/3 1 5  = 0. 1 270, the same as calculated above. Its standard error equals 
[ J(r + s)]/n = )68/3 1 5  = 0.0262. An approximate 95% confidence interval can be 
derived in the usual way: 

95% CI = 0. 1 270 - ( 1 .96 x 0.0262) to 0 . 1 270 + ( 1 .96 x 0.0262) 

= 0.0756 to 0 . 1 784 

With 95% confidence, the positivity rate is  between 7 .6% and 1 7 .8% higher if  
the Be l l  method is used to detect S. mansoni eggs than if the Kato-Katz method i s  
used . 

z-test for difference between proportions 

If there was no difference in the abilities of the methods to detect S. mansoni eggs, 
we would not of course expect complete agreement since different subsamples 
were examined, but we would expect on average half the disagreements to be 
positive with the Bell method only and half to be positive with the Kato-Katz 
method only. Thus an appropriate test of the nul l  hypothesis that there is no 
difference between the methods is to compare the proportion found positive with 
the Bell method only, namely 54/68,  with the hypothetical value of 0.5. This may 
be done using the z test, as described in  Section 1 5 .6. As usual, we construct the 
test by d ividing the di fference by its standard error assuming the null hypothesis to 
be true, which gives: 

54/68 - 0.5 

z 
= 

J(0 .5 x 0.5/68) 
= 4.85, p < 0.00 1 

There is strong evidence that the Bell method is more l ikely to detect S. mansoni 
eggs than the Kato-Katz method. (Note that other than for the sign of the :::: 
statistic exactly the same result would have been obtained had the proportion 
positive with the Kato-Katz method only, namely 1 4/68, been compared with 0 .5 . )  

2 1 . 3  U S I N G  O D D S  R AT I O S  F O R  P A I R E D  DATA 

An alternative approach to  the analysis of matched pairs is  to estimate the  odds 
ratio comparing the Bell and Kato-Katz methods. Again, our analysis must take 
the pairing into account. This can be done using Mantel-Haenszel methods (see 
Section 1 8 .4), with the data stratified into the individual pairs. Using the same 
notation as in Chapter 1 8, the notation for the ith pair is shown in  Table 2 1 . 3 .  The 
Mantel-Haenszel estimate of the odds ratio (see Chapter 1 8) is given by: 
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Table 2 1 .3 Notation for the 'stratified' 2 x 2 table giving the results for pair i. 

Outcome 

+ Total 

Bel l  method dli h,; 
Kato-Katz method do; ho; 

Total d; h; 2 

As in the last section, the analysis can be simplified if we note that there are only 
four possible outcomes for each pair, and therefore only four possible types of 
2 x 2 table. These are shown in Table 2 1 .4, together with their contributions to the 
numerator and denominator in  the formula for the Mantel-Haenszel OR. This 
shows that, again ,  only the d iscordant pairs contribute to the Mantel-Haenszel 
estimate of the odds rat io .  The total for the numerator is r/2, while the total for the 
denominator is  s/2. The estimated odds ratio is therefore: 

ORMH = :j� = � , the ratio of the n umbers of discordant pairs 

Table 2 1 .4 Possible outcomes for each pair, together with their contributions to the numerator and 

denominator in the formula for the Mantel-Haenszel estimate of the odds ratio. 

Bel l 

Kato-Katz 

Number of pairs 

dli x ho; 
n; 

do; x hli 
n; 

+ 

0 

0 

Concordant pairs 

0 
0 

+ 

0 
0 

0 

0 

+ 

1 
0 

1;, 

0 

Discordant pairs 

+ 

0 0 

An approximate 95% error factor for the odds ratio is given by: 

EF = exp[ l .96 x J( l /r + l /s)] 

s 

0 

1 
0 

In the example, the estimated odds ratio is given by 54/ 1 4  = 3 .857, while the error 
factor is exp [ l .96 x J( l /54 + 1 / 1 4)] = 1 . 1 93 .  The approximate 95% confidence 

interval is therefore given by: 
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95% CI = OR/EF to OR x EF = 3 .857/ 1 . 1 93 to 3 . 857 x 1 . 1 93 = 3 .234 to 4 .60 1 

McNemar's chi-squared test 

A chi-squared test, based on the numbers of discordant pairs, can also be derived 
from the formula for the Mantel-Haenszel statistic presented in Chapter 1 8  and is 
given by: 

2 (r - s)2 

Xpaired = ---
'
d . f. = 1 

r + s 

This is known as McNemar's chi-squared test. I n  the example x2 = ( 54 - 1 4)2 

/(54 + 1 4) = 402 /68 = 23 .53 ,  d .f. = I ,  P < 0.00 1 .  Apart from rounding error, 
this x2 value is the same as the square of the z value obtained above 
(4.852 = 23 .52) ,  the two tests being mathematically equivalent .  

Val idity 

The use of McNemar's chi-squared test or the equivalent z test is valid provided 
that the total n umber of discordant pairs is at least 1 0 . The approximate error 
factor for the 95% CI for the odds ratio is valid providing that the total number of 
pairs is  greater than 50. If these conditions are not met then methods based on 
exact binomjal probabi l ities should be used ( these are described by Alman et al. 
2000). 

2 1 . 4 A N A LY S I N G  M A T C H E D  CAS E-CO N T R O L  S T U D I E S  

The methods described above can also be used for the analysis o f  case-control 
studies and clinical trials which have employed a matched design, as described in 
the introduction. The rationale for this and the design issues are discussed in more 
detail in  Chapter 34. 

Example 2 1 . 2  
Table 2 1 .5 shows data from a study to  investigate the association between use o f  
oral contraceptives and thromboembolism. The cases were 1 75 women aged 1 5-44 
discharged alive from 43 hospitals after initial attacks of thromboembolism . For 
each case a female patient suffering from some other disease (thought to be 
unrelated to the use of oral contraceptives) was selected from the same hospital 
to act as a control . She was chosen to have the same residence, time of hospital
isation, race, age, marital status, parity, and income status as the case. Participants 
were questioned about their past contraceptive h istory, and in part icular 
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Table 2 1 .5 Results o f  a matched case-control study, showing the association between 

use of oral contraceptives (OC) and thromboembolism. With permission from Sartwell et al. 
(1 969) American Journal of Epidemiology 90: 365-80. 

Controls 

OC used OC not used Total 

OC used 1 0  57 67 
Cases 

OC not used 1 3  95 1 08 

Total 23 1 52 1 75 

OR = 57 /1 3 = 4.38 

about whether they had used ora l  contraceptives during the month before they 
were admitted to hospital. 

The pairing of the cases and controls is preserved in the analysis by comparing 
oral contraceptive use of each case against oral contraceptive use of their matched 
contro l .  There were ten case-control pairs in which both case and control had 
used oral contraceptives and 95 pairs in which neither had. These 1 05 concordant 
pairs give no i nformation about the association. This information is  entirely 
contained in the 70 discordant pairs in which the case and control differed. 
There were 57 case-control pairs in which only the case had used oral contracep
t ives within the previous month compared to 1 3  in which only the control had 
done so. The odds ratio is measured by the ratio of these discordant pairs and 
equals 4 .38 ,  which suggests oral contraceptive use leads to a substantial increase in 
the risk of thromboembolism. 

OR = ratio of d iscordant pairs 

no .  of pairs in which case exposed, control not exposed 
no .  of pairs in which control exposed, case not exposed 

The error factor i s  exp[ l .96 x J( l /57 + 1 / 1 3 )] = 1 . 827. The 95% CI for the odds 
ratio is therefore 4.38/ 1 . 827 to 4 .38 x 1 . 827, which is  2 .40 to 8 .0 1 .  McNemar's x2 

test gives: x2 = (95 - I 0)2 /(95 + 1 0) = 26.4, P < 0.00 1 ,  corresponding to strong 
evidence against the nul l  hypothesis that there is  no association. 

If several controls rather than a single matched control are selected for each 
case, the odds ratio can sti l l  be estimated by using Mantel-Haenszel methods. 
However, these methods are severely l imited because they do not allow for further 
stratification on confounding variables which were not also matching variables. 
The solution to this problem is to use conditional logistic regression, which we 
describe next. 
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2 1 . 5  C O N D I T I O N A L  L O G I S T I C  R E G R E S S I O N  

I n  general when analysing i ndividually matched case-control studies we may wish 
to control for confounding variables, additional to those matched for in  the 
design. This is done using conditional logistic regression, a variant of logistic 
regression in which cases are only compared to controls in the same matched 
set. In the simple case of individually-matched case-control studies with one 
control per case and no further confounders, conditional logistic regression wil l 
give identical results to the methods for paired data described earlier in  the 
chapter. H owever, additional confounders may be included in the model, and 
there is  no restriction on the numbers of cases and controls in each matched set. 

Once the reader is famil iar with the use of logistic regression, then condit ional 
logistic regression should present no additional difficult ies. The only difference is  
that in  addition to the outcome and exposure variables, the computer software 
requires a variable that specifies which case (or cases) matches which control (or 
controls) .  Exposure effects are estimated by considering possible combinations of 
exposures, conditional on the observed exposures within each matched set. For 
example, if the set consists of one case and two controls, with on ly one of the set 
exposed and the other two unexposed, then the three possible combinations are: 

1 
2 
3 

Case 

Exposed 

Unexposed 

Unexposed 

Control 1 

Unexposed 

Exposed 

Unexposed 

Control 2 

Unexposed 

Unexposed 

Exposed 

I t  is because the possible combinations are conditional on the total number of 
exposed and unexposed individuals in each matched set that the method is called 
conditional logistic regression. This argument extends in a straightforward manner 
to numeric exposure variables and to more than one exposure variable. 

Example 2 1 . 3  
Table 2 1 .6 shows data from a matched case-control study of  risk factors for 
infant death from diarrhoea in Brazil [Victora et al. ( 1 987) Lancet i i :  3 1 9-322], 
in which an attempt was made to ascertain all infant deaths from diarrhoea 
occurring over a one-year period in two cities in  southern Brazil ,  by means of 
weekly visits to all hospitals, coroners' services and death registries in  the cities. 
Whenever the underlying cause of death was considered to be diarrhoea, a 
physician visited the parents or guardians to collect further information about 
the terminal i l lness, and data on possible risk factors. The same data were 
collected for two 'control' infants. Those chosen were the nearest neighbour 
aged less than 1 year, and the next nearest neighbour aged less than 6 months. 
This procedure was designed to provide a control group with a similar socio
economic distribution to that of the cases. The selection also ensures 
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Table 2 1 .6 First 24 l ines (eight case-control sets) of the dataset for the matched case-control 

study of risk factors for infant death from diarrhoea in southern Brazil. Reproduced with kind 

permission of C.G. Victora. 

Observation 

number case set water agegp bwtgp social income 

1 1 0 2 3 1 3 
2 0 3 4 2 2 
3 0 2 3 3 
4 2 2 1 2 
5 0 2 3 4 2 3 
6 0 2 2 4 2 
7 1 3 2 3 2 
8 0 3 3 4 
9 0 3 3 2 4 

1 0  1 4 3 3 2 
1 1  0 4 4 3 3 
1 2  0 4 2 4 1 2 
1 3  5 2 2 2 
1 4  0 5 4 2 2 
1 5  0 5 2 3 
1 6  6 3 2 2 
1 7  0 6 4 4 2 
1 8  0 6 2 3 2 
1 9  7 1 2 
20 0 7 4 3 2 
2 1  0 7 2 4 2 
22 8 3 3 3 
23 0 8 5 2 2 
24 0 8 4 

that there are approximately twice as many controls less than 6 months old, as 
between 6- 1 1  months; this matches what was known concerning the age distribu
tion of the cases. During the one-year study period, data were collected on 1 70 
cases together with their 340 controls. In  addition to variable case ( 1  = case, 
0 = contro l ) ,  the dataset contains a variable set which gives the number (from 
l to 1 70) of the set to which each case and its two matched controls belong. Table 
2 1 .6 contains the first 24 l ines (eight case-control sets) of this dataset. 

Variable water denotes whether the child's household had access to water in 
their house or plot ( water = 1 )  or not (water = 0). Variable agegp (age group) is 
coded as 1 = 0- 1  months, 2 = 2-3 months, 3 = 4-5 months, 4 = 6 - S months 
and 5 = 9 - 1 1 months. Variable bwtgp (birth weight group, kg) has values 
1 = 1 . 50-2 .49, 2 = 2 .50-2 .99, 3 = 3 .00-3 .49, 4 = ::;:: 3 .50 kg. The final two vari
ables are social (household social group) from I (most deprived) to 3 ( least 
deprived), and income (household income group) from I ( least monthly income) 
to 4 (most monthly i ncome) .  
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Examining the effect of a single exposure variable 

A total of 1 1 1  (65 .3%) cases and 259 (76.2%) controls had access to water, 
suggesting that access to water might be protective against infant death from 
diarrhoea. Since this is a matched case-control study, the calculation of the odds 
ratio for this exposure and all other analyses must take into account the matching. 
Using Mantel-Haenszel methods stratified by set ( 1 70 strata, each containing 
1 case and 2 controls) gives an estimated odds ratio of 0.275 (95% CI = 0 . 1 36 to 
0 .555) .  Access to water thus appears to be strongly protective against infant 
diarrhoea death.  Table 2 1 .7 shows corresponding output from a conditional 
logistic regression model (also stratifying on set for the effect of household 
water supply). The estimated odds ratio i s  similar to that derived using Mantel
Haenszel methods. 

Table 2 1 . 7  Conditional logistic regression output (odds ratio scale) for the association 

between household water supply and infant diarrhoea death in southern Brazil . 

Odds ratio z P > lz l 95% Cl 

Water 0.2887 -3.67 0.000 0.1 487 to 0.5606 

A possible alternative approach to the analysis of such data is to fit a standard 
logistic regression model, incorporating an indicator variable in the model corres
ponding to each case-control set, as a way of controll ing for the matching. It is 
important to note, however, that for finely matched data this 1vi!l give the wrong 
answer, and that the odds ratios obtained will be further away from the nul l  value 
of 1 than they should be. For data in which the sets consist of exactly one case and 
one control, the estimated odds ratio from such a model wil l be exactly the square 
of the odds ratio estimated using Mantel-Haenszel methods stratified by set, or 
using conditional logistic regression. 

Control l ing for confounders, additional to those used for matching 

Since access to water may be associated with a household's social status, we may 
wish to control additionally for the effects of variables such as social and income. 
Because there are only three subjects in each stratum, further stratification using 
Mantel-Haenszel methods is not feasible. However, conditional logistic regression 
allows us to control for the effects of confounding variables in addition to those 
used in the matching. Table 2 1 . 8 shows output from a conditional logistic regres
sion model, control l ing for the effects of all the variables in Table 2 1 .6 .  Here, 
agegp(2) i s  an indicator variable (see Section 1 9 .4) which takes the value 1 for 
infants in age group 2 and 0 for infants in  other age groups. However, the 
corresponding odds ratio of 2 .6766 cannot be interpreted as the odds of death i n  
age group 2 compared t o  age group l ,  because age was used in the matching of 
cases to controls. The odds ratio for the effect of water is only slightly increased 
(closer to the nul l  value of 1 ), so we would conclude that the additional variables 
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Table 21 . 8  Conditional logistic regression output (odds ratio scale) for the association between 

household water supply and infant diarrhoea death in southern Brazil, control l ing for the effects 

of potentially confounding variables. 

Odds Ratio z P > lzl 95% Cl 

water 0.2991 -3.20 0.001 0 . 1427 to 0.6269 

agegp(2) 2.6766 2.89 0.004 1 .371 9 to 5.2222 

agegp(3) 2.4420 2.50 0.0 1 2  1 .2 1 21 to 4.91 99 

agegp(4} 3.2060 3.27 0.001 1 .5940 to 6.4482 

agegp(5) 0.8250 -0.43 0.666 0.3444 to 1 .9758 

bwtgp(2) 0.48 1 4  -2 .00 0.045 0.2354 to 0.9844 
bwtgp(3) 0.41 1 1  -2.52 0.0 1 2  0.2061 to 0.81 99 

bwtgp(4) 0.3031 -3 . 1 2 0.002 0. 1 431  to 0.6422 

socia/(2) 0.951 7 -0.2 1 0.830 0.6058 to 1 .4951 

socia/(3) 0.1 527 -1 .78 0.075 0.01 92 to 1 .2 1 28 

income(2) 0.7648 -0.85 0.394 0.41 28 to 1 .41 70 
income(3) 0.6970 -1 .01 0.3 1 2  0.3459 to 1 .4043 
income(4) 0.6991 -0.86 0.389 0.3098 to 1 .5774 

included in the model had only a sl ight confounding effect, and that there is  sti l l a 
clear protective effect of having a water supply in a household. 





PART D 

L O N GIT U DINA L ST U D I ES:  A NA L YSIS 
O F  RAT ES A N D S U R VIVA L TIM ES 

In this part of the book we describe methods for the analysis of longitudinal 

studies, that is studies in which subjects are fol lowed over t ime. These may be 
subdivided into three main types: 
• cohort studies in which a group of individuals is followed over t ime, and the 

incidence of one or more outcomes is  recorded, together with exposure to one or 
more factors 

• survival studies in  which individuals are followed from the t ime they experience a 
particular event such as the diagnosis of disease, and the t ime to recurrence of 
the disease or death is  recorded 

• intervention studies in which subjects are randomized to two or more interven
t ion or treatment groups (one of which is often a control group with no active 
intervention or t reatment or with standard care) ;  the occurrence of pre-specified 
outcomes is recorded 

These different types of study are described in more detail in Chapter 34. Our 
focus is on methods for their analysis, where the outcome of interest is binary, and 
where: 
I individuals in the study are fo//0 1ved over different lengths of time, and/or 
2 we are interested not only in whether or not the outcome occurs, but also the 

time at which it occurs. 
Note that for longitudinal stud ies in which everyone is followed for exactly the 
same length of time, the methods described in Part C can be used if the outcome is 
defined as the risk or odds of the event of interest. The exception is studies when 
most subjects wil l experience the event of interest by the end of the follow-up. For 
example, in  a trial of a new treatment approach for lung cancer, even if  every 
patient were fol lowed for 1 0  years, the focus would be on assessing whether the 
new treatment had extended the survival t ime, rather than comparing the propor
t ion who survived in  each group. This is because lung cancer has a very poor 
prognosis; the probabil ity of anyone surviving for more than 1 0  years is close to 
zero. 

In Chapter 22 we explain why variable follow-up times are common and the 
special issues that arise in their analysis, and we define rates of disease and 

mortality as the appropriate outcome measure. We then introduce the Poisson 

distribution for the sampling distribution of a rate and derive a standard error of a 
rate from i t .  I n  Chapter 23 we describe how to compare two rates, and how to 
control for the effects of confounding using stratification methods, and in Chapter 
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24 the use of Poisson regression methods. I n  Chapter 25 we describe the use of 
standard ized rates to enable ready comparison between several groups. This part 
of the book concludes with the group of methods known as survival analysis; 

Chapter 26 covers the use of l ife tables, Kaplan-Meier estimates of survival curves 
and log rank tests, and Chapter 27 describes Cox (proportional hazards) regres
sion for the analysis of survival data. In contrast to the other methods for the 
analysis of longitudinal studies presented earlier in this part, survival analysis 
methods do not require the rate(s) to be constant during specified t ime periods. 

We will assume throughout this part of the book that individuals can only 
experience one occurrence of the outcome of interest. This is  not the case where 
the outcome of interest is a disease or condition that can recur. Examples are 
episodes of diarrhoea, acute respiratory infection, malaria, asthma and myocar
d ia l  infarction, which individuals may experience more than once dur ing the 
course of the study. Although we can apply the methods described in  this part 
of the book by defining the outcome as the occurrence of one or more events,  and 
using the time un t i !  the jlrsl occurrence of the event ,  a more appropriate approach 
is to use the methods presented in Chapter 3 1 ,  which describes the analysis of 
clustered data. The methods in Chapter 3 1  also apply to the analysis of longitu
dinal studies in  which we take repeated measures of a quantitative outcome variable, 

such as blood pressure or lung function, on the same individual . 



C H A P T E R  2 2  

Longitudinal studies, rates and the 

Poisson distribution 

22.1  Introduction 22.4 The Poisson distribution 

22.2 Calculating periods of Definition of the Poisson distribution 

observation (follow-up times) Shape of the Poisson distribution 

Using statistical computer packages Use of the Poisson distribution 

to calculate periods of follow-up 22.5 Standard error of a rate 

22.3 Rates 22.6 Confidence interval for a rate 

Understanding rates and their 

relationship with risks 

2 2 . 1  I N T R O D U C T I O N  

I n  this chapter we introduce the rate of event occurrence, as the outcome measure 
for the analysis of longitudinal studies. We explain why variable fol low-up t imes 
happen, show how rates are estimated and discuss what they mean and how they 
relate to the measure of event occurrence described in Part C. We then describe the 
Poisson distribution for the sampling distribution of a rate, and use its properties to 
derive confidence intervals for rates. In the next chapter we introduce two meas
ures used to compare rates in  different exposure groups; the rate ratio and the rate 

difference. 

2 2 . 2  CA L C U LA T I N G  P E R I O D S  O F  O B S E R V AT I O N  ( F O L L O W - U P  T I M E S )  

In the majority o f  longi tudinal studies, individuals are followed fo r  different 
lengths of time. Methods that take this into account are the focus of this part of 
the book. Variable follow-up times occur for a variety of reasons: 
• for logistic reasons, individuals may be recruited over a period of t ime but 

fol lowed to the same end date 
• in an intervention or cohort study, new individuals may be enrolled during the 

study because they have moved into the study area 
• in a survival study, there may be a delay between the diagnosis of the event and 

recruitment into the study 
• some individuals may be lost to follow up, for example because of emigration 

out of the study area or because they choose to withdraw from the study 
• some individuals may d ie from ca uses other than the one that is the focus of 

in terest 
• in studies where the population of interest is defined by their age, for example 

women of child bearing age (ie. 1 5-44 years), individuals may move into or out 
of the group during the study as they age. 
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Fig. 22.1  Follow-up histories for 5 subjects in a study of mortal ity aher a diagnosis of prostate cancer 

(D = died, E = emigrated, W = withdrew, • = reached the end of follow-up without experiencing the 

disease event). 

Figure 22. 1 depicts an example from a study of prostate cancer, which shows that 
subjects were recruited to the study at varying times after diagnosis and exited at 
different points in time. Only subject 3 was followed for the fu l l  S years: subjects 2 
and S died, subject 1 emigrated and subject 4 withdrew from the study. Survival 
t imes for subjects who are known to have survived up to a certain point in time, 
such as subjects 1 and 4, but whose survival status past that point is  not known, 
are said to be censored. 

An individual's period of observation (or follow-up time) starts when they join 
the study and stops when they experience the outcome, are lost to fol low-up, or 
the fol low-up period ends, whichever happens first. This is the t ime during which, 
were they to experience an event, the event would be recorded in  the study. This 
period is also called the period at risk. I t  is often measured in years, when i t  is 
called person-years-at-risk or pyar. 

The occurrence and timings of outcome events, losses to follow-up, and recruit
ment of new participants are most accurately determined through regular surveil
lance of the study population. In some countries this may be possible using 
national databases, for example of deaths or cancer events, by 'flagging' the 
subjects under surveillance in the study so that the occurrence of events of in terest 
can be routinely detected. In other settings it may be necessary to carry out 
conununity-based surveil lance. For logistic simplicity, and cost considerations, 
this is  sometimes carried out by conducting just two cross-sectional surveys, one at 
the beginning and one at the end of the study period, and enquiring about changes 
in the intervening period. If the exact date of an outcome event, loss to fol low-up, 
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or new recruitment cannot be determined through questioning, it is usually 
assumed to have occurred half-way through the interval between the surveys. 

Using statistical computer packages to calculate periods of fol low-up 

When analysing longitudinal studies, i t  is important to choose a statist ical com
puter package that al lows easy manipulation of dates. Many packages provide a 
faci l i ty for automatic recoding of dates as the total number of days that have 
elapsed since the start of the Julian calendar, or from a chosen reference date such 
as l /Jan/ 1 960. Thus, for example, 1 5/Jan/ 1 960 would be coded as 1 4, 
2/Feb/ 1 960 as 32, I /Jan/ I 959 as -365 and so on.  I t  is then easy to calculate 
the time that has elapsed between two dates. I f  the recoded variables are startdate 
and exitdate, and since (taking leap years into account) there are on average 
365.25 days in a year, the follow-up time in years is given by: 

Fol low-up time in years = (exitdate - startdate)/365.25 

2 2 . 3  R A T E S  

The rate o f  occurrence o f  a n  outcome event measures the number of new events 
that occur per person per unit time, and is denoted by the Greek letter }, ( lambda) .  
Some examples of rates are: 
• I n  the UK,  the incidence rate of prostate cancer is 74.3 / I  00 000 men/year. In 

other words, 74.3 new cases of prostate cancer are detected among every I 00 000 
men each year 

• In  the UK, the mortality rate from prostate cancer is 32 .5/ 1 00 000 men/year. I n  
other words 32 .5  out o f  every I 00 000 men die from prostate cancer each year 

• In the UK,  the incidence rate of abortions among teenage girls aged 1 6- 1 9  years 
rose from 6. 1 / 1 000 girls/year in 1 969 to 26.0/ 1 000 girls/year in 1 999 

The rate is  estimated from study data by d ividing the total number ( d )  of events 
observed by the total  ( T )  of the individual person-years of observation . 

Rate, }, = 
number of events 

total person-years of observation 
d 

T 

Note that the sum, T, of the individual person-years is equivalent to the average 
number of persons under observation multipl ied by the length of the study. 

The rate is  also known as the incidence rate (or incidence density) of the outcome 
event, except when the outcome of in terest is death, in which case it is called the 
mortality rate. For rare events, the rate is  often mul tipl ied by 1 000 (or  even 1 0 000 
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or 1 00 000) and expressed per 1 000 (or 1 0  000 or 1 00 000) person-years-at-risk. 
For a common disease such as diarrhoea or asthma, which may occur more than 
once in the same person, the incidence rate measures the average number of 
attacks per person per year (at risk ) .  However, the standard methods for the 
analysis of rates (described in this part of the book) are not valid when individuals 
may experience mult iple episodes of disease. We explain how to deal with this 
situation in Chapter 3 1 .  

Example 22. 1 
Five hundred children aged less than 5 years l iving in a community 111 
rnral Guatemala were enrolled in a study of acute lower respiratory infections. 
Fi fty-seven were hospital ized for an acute lower respiratory infection, after 
which they were no longer fol lowed in the study. The study lasted for 2 years, 
but because of migration, the occurrence of infections, passing the age of 5 ,  
and losses to fol low-up, the number under surveil lance declined w i th  t ime and 
the total child-years at risk was T = 873 ( i .e. an average population size of 436 
over the 2 years) . The rate of acute lower respiratory infections was therefore 
estimated to be: 

), = 57 /873 = 0 .0653 per child-year 

This can also be expressed per 1 000 child-years at risk, as: 

), = 57 /873 x 1 000 = 65.3 per 1 000 child-years 

Note that the estimated rate will be the same whether the child-years of fol low-up 
arise from following (for example) 1 000 children for I year, 500 children for 
2 years or 250 children for 4 years (and so on) .  

Understanding rates and their relationship with risks 

The rate relates the number of new events to total observation time. This is in 
contrast to the risk, or cumulative incidence (see Chapter 1 5 ) ,  in which the number 
of new events is  related to the number at risk at the beginning of the observation 
period; the longer the period of observation the greater the risk will be, since there 
will be more time for events to occur. Measures of risk therefore contain an 
implicit but not explicit t ime element. 

Figure 22.2 i l lustrates the accumulation of new cases of a d isease over a 5 year 
period in a population initially disease ji·ee, for two somewhat different incidence 
rates: (a ) ), = 0 .3/person/year, and (b) ), = 0.03/person/year. For ease of under
standing, we are i l lustrating this assuming that the population remains constant 
over the 5 years, and that there is  complete surveillance; that is that there are no 
losses to fol low-up, and no migration either in or out. 
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Fig. 22.2 A graphical representation of two follow-up studies which lasted for 5 years. In the top graph (a) 

the rate of disease is 0.3 /person/year, and the disease-free population declines exponentially with time. I n  

the bottom graph (b) the rate i s  0.03 /person/year, and the decline in the disease-free population i s  

approximately linear over the period of the study. 
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The disease rate applies to the number of people disease-free at a particular 
point in  t ime. Understanding the effect of this is  a bit l ike understanding the 
calculation of compound interest rates. In  Figure 22.2(a), the incidence rate is 
high, and so the proportion of the population remaining disease free is changing 
rapidly over time. The disease rate is  therefore operating on an ever-diminishing 
proportion of the population as t ime goes on. This means that the number of new 
cases per unit t ime will be steadily decreasing. 

In other words, although the d isease rate is constant over t ime, the cumulat ive 
incidence and risk do not increase at a constant pace; their increase slows down 
over time. This is  reflected by a steadily decreasing gradient of the graph showing 
how the disease-free population is diminishing over time (or equivalently how the 
number who have experienced the disease, that is  the cumulative incidence, is  
accumulating) . I t  can be shown mathematically that when the rate is constant over 
t ime, this graph is described by an exponential function, and that : 

Proportion d isease free at t ime t = e-i.i 

Risk up to time t = 1 - e-"1 

Average time to contracting the disease = 1 /II. 

I n  Figure 22.2(b ) ,  the incidence rate is low and so the proportion of the population 
remaining d isease-free decreases slowly over time. It remains sufficiently close to 
one over the 5 years that the exponential curve is  approximately l inear, corres
ponding to a constant increase of new cases (and therefore of risk) over time. I n  
fact when the value of }, is very small, the risk i s  approximately equal t o  the rate 
multiplied by the t ime: 

When }, i s  very small, risk up to t ime t � 11.t, so that 

}, � risk 

t 

Table 22. 1 shows the values of the risks (up to 1 ,  2 and 5 years) that resu l t  from 
these two very different rates. This confirms what we can see visually i n  Figure 
22.2 .  For the high rate (), = 0 .3/person/year), the number of new cases per uni t  
t ime is steadily decreasing; the increase is always less than the rate because the size 
of the 'at risk' population is decreasing rapidly. Thus at 1 year, the cumulative risk 
is  a bit less than the rate (0.26 compared to 0.3), at 2 years it is  considerably less 
than twice the rate (0.45 compared to 0.6), and so on. I n  contrast, for the low rate 
(), = 0.03/person/year), the number of new cases is increasing steadily, and the 
risk i ncreases by approximately 0.03/year. 
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Table 22 .1  Risks of disease up to 1 ,  2 and 5 years corresponding to rates of 'A = 0.3/person/year, and 

'A =  0.03/person/year. 

Rate of disease 

0.3/person/year 

0.03/person/year 

Over 1 year 

1 - e-0·3 = 0.26 

1 - e-0 03 = 0.03 

Risk of disease 

Over 2 years 

1 - e-O l x2 = 0.45 

1 - e-0 03 x2 = 0.06 

Over 5 years 

1 - e-Olx5 = 0 .78 

1 - e-0 03 x 5 = 0 . 1 4 

We have demonstrated that when ), is very smal l ,  the risk up to time t approxi
mately equals ),t .  This i s  equivalent to the rate, ),, being approximately equal to the 
value of the risk per unit t ime (risk/t) .  We will now show that the value of risk/ t  
also gets close to  the rate a s  the length of the time interval gets very smal l .  This i s  
true whatever the size of the rate, and i s  the basis o f  the formal definition of a rate, 

as the value of risk/ t when t is very small. 

A. 
= 

risk 
when t i s  very small 

t ' 

Table 22.2 i l lustrates this for the fairly high rate of ), =  0.3/person/year. Over 
5 years, the risk per year equals 0 . 1 554, just over half the value of the rate. If the 
length of time is decreased to I year, the risk per year is considerably higher at 
0 .2592, but sti l l  somewhat less than the rate of 0.3 per year. As the length of time 
decreases further, the risk per year increases; by one month i t  is very close to the 
rate, and by one day almost equal to it. 

Table 22.2 Risk of disease, and risk/t, for different lengths of time interval t, when the rate, 

'A =  0.3/person/year. 

Length of time interval. t 

1 month 

5 years 1 year (30 days) 1 week 1 day 1 hour 1 minute 

t (years) 5 0.082 1 9  0.01 91 8 0.002740 0.0001 1 42 0.000001 900 

risk = 1 - e-0·3' 0.7769 0.2592 0.02436 0.005737 0.000821 6  0.00003420 0.00000057 1 0  

risk/t 0.1 554 0.2592 0.2963 0.2992 0.2999 0.3000 0.3000 

2 2 . 4  T H E  P O I S S O N  D I S T R I B U T I O N  

We have already met the normal distribution for means and the binomial distri
bution for proportions. We now introduce the Poisson distribution, named after 
the French mathematician, which is appropriate for describing the number of 
occurrences of an event during a period of t ime, provided that these events 
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occur independently of each other and at random. An example would be the 
number of congenital malformations of a given type occurring in  a particular 
district each year, provided that that there are no epidemics or specific environ
mental hazards and that the population is constant from year to year (also see 
Example 22.2) .  

The Poisson d istribution is  also appropriate for the number of particles found 
in a uni t  of space, such as the number of malaria parasites seen i n  a microscope 
field of a blood sl ide, provided that the particles are distributed randomly 
and independently over the total space. The two properties of randomness and 
independence must both be fulfilled for the Poisson distribution to hold. For 
example, the number of Schistosoma mansoni eggs in a stool sl ide wil l not be 
Poisson, since the eggs tend to cluster in clumps rather than to be d istributed 
independently. 

After in troducing the Poisson distribution in general for the n umber of events, 
we wil l  explain i ts application to the analysis of rates. 

Definition of the Poisson distribution 

The Poisson distribution describes the sampl ing distribution of the number of 
occurrences, d, of an event during a period of t ime (or region of space) .  I t  depends 
upon just one parameter, which is the mean number of occurrences, µ, in  periods 
of the same length (or in  equal regions of space) .  

e-µ µd 
Probabil ity (d occurrences) = � 

Note that, by definit ion, both O! and µ0 equal 1 .  The probability of zero occur
rences is  therefore e-J.1. (e is the mathematical constant 2 .7 1 828 . . .  ) .  

Mean number of  occurrences = p, 
s.e . of number of occurrences = ,jµ 

The standard error for the number of occurrences equals the square root  of 
the mean, which is estimated by the square root of the observed number of events, 
vd. 

Example 22.2 
A district health authority which plans to close the smaller of two maternity units 
is  assessing the extra demand this will place on the remaining unit .  One factor 
being considered is the risk that on any given day the demand for admissions wi l l  
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exceed the unit 's capacity . At present the larger unit averages 4 .2 admissions per 
day and can cope with a maximum of 1 0  admissions per day. This results in the 
unit's capacity being exceeded only on about one day per year. After the closure of 
the smaller uni t  the average number of admissions is expected to increase to 6 . 1 
per day. The Poisson distribution can be used to estimate the proportion of days 
on which the unit 's capacity is then l ikely to be exceeded. For this we need to 
determine the probabi l i ty of getting 1 1  or more admissions on any given day. This 
is  most easily calculated by working out the probabil i t ies of 0,  I ,  2 . . .  or 1 0  admis
sions and subtracting the total of these from 1 ,  as shown in Table 22 . 3 .  For 
example: 

b b · 1 · ( d 
. . 

) 
e-6 I 6. 1 3 

Pro a 1 1ty three a rn 1ss1ons = 3 1  

The calculation shows that the  probabil i ty of 1 1  or more admissions i n  a day is 
0 .0470. The unit 's capacity is therefore l ikely to be exceeded 4.7 % of the t ime, or 
on about 1 7  days per year. 

Table 22.3 The probabilities of the number of admissions made 

during a day in a maternity unit, based on a Poisson distribution 

with a mean of 6.1 admissions per day. 

No. of admissions Probability 

0 0.0022 
0.01 37 

2 0.041 7 
3 0.0848 
4 0.1 294 
5 0.1 579 
6 0.1 605 
7 0.1 399 
8 0.1 066 
9 0.0723 
1 0  0.0440 

Total (0 - 1 0) 0.9530 
1 1  + (by subtraction, 1 - 0.9530) 0.0470 

Shape of the Poisson distribution 

Figure 22.3 shows the shape of the Poisson distribution for various values of i ts  
mean, µ. The distribution is very skewed for small means, when there i s  a sizeable 
probabil i ty that zero events will be observed. It is symmetrical for large means and 
is adequately approximated by the normal distribution for val ues of µ =  I 0 or  
more.  
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Fig. 22.3 Poisson distribution for various values of µ. The horizontal scale in each diagram shows values of 
the number of events, d. 

Use of the Poisson distribution 

The Poisson d istribution (and its normal approximation) can be used whenever it 
is  reasonable to assume that the outcome events are occurring independently of 
each other and randomly in time. This assumption is, of course, less l ikely to be 
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true for infectious than for non-communicable diseases but, provided there is no 
strong evidence of disease clustering, the use is still just ified . Specific techniques 
exist to detect d isease clustering in time and/or space (see Ell iott et al. , 2000), such 
as the possible clustering of cases of leukaemia or variant Creutzfeldt-Jakob 
disease in  a particular area . Such clusters violate what might otherwise be a 
Poisson d istribution . 

2 2 . 5  S T A N D A R D  E R R O R  O F  A RATE  

We now discuss the use of the Poisson distribution for the analysis of  rates. Recal l  
that: 

Rate, ?i. = 
number of events 

total person-years of observation 
d 
T 

Although the value of the total person-years of observation ( T)  is affected by the 
number of events, and the time at which they occur (since an individual's period of 
observation only contributes until they experience an event, as then they are no 
longer at risk), i t  can be shown that we do not need to explicitly consider this 
variation in T. We can therefore calculate the standard error of a rate as 
follows: 

s.e. (rate) = 
s.e. (number of events)

= 
./d 

= 
/ }, 

T r V r  

The right hand vers10n of the formula (derived by replacing Jd with JU T)) 
makes i t  clear that the standard error of the rate wi l l  be smaller the larger the 
total  person-years of observation, as ). wi l l  be the same, on average, whatever the 
value of this .  

Example 22. 1 (continued) 
We showed earlier that in the 2-year morbidity study in rural Guatemala the rate 
of acute lower respiratory infections, expressed per 1 000 child-years at risk, was 
estimated to be 65.3 per 1 000 child-years. The standard error of the rate is :  

Jd J57 
s.e. = T x 1 000 = 873 x 1 000 = 8 .6  
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2 2 . 6  C O N F I D E N C E  I N T E RV A L  F O R  A R A T E  

A confidence interval for a rate can be derived from its standard error, in the usual 
way. However, it is preferable to work on the log scale and to derive a confidence 
interval for the log rate, and then to antilog this to give a con fidence interval for a 
rate, since this takes account of the constraint that the rate must be greater than or 
equal to zero. We now show how to do this. 

The formula for the standard error of the log rate is derived using the delta 

method (see Box 1 6. 1  on p. 1 57), and is : 

1 s .e .  ( log rate) = 
./d 

Thus, perhaps surprisingly, the standard error of the log rate depends only on the 
number of events, and not on the length of follow-up time. In the same way as 
shown in  Chapter 1 6, the steps of calculating the confidence interval on the log 
scale and then converting it to give a confidence interval for the rate can be 
combined into the following formulae: 

95 % CI (rate) = rate/EF to rate x EF 

Error factor (EF) = exp( l .96/./d) 

Example 22. 1 (continued) 
For the Guatemala morbidity study there were 57 lower respiratory infections in 
873 child-years at r isk .  The log rate per 1 000 child-years at r isk,  is log(),) = 
log( l OOO x 57 /873) = log(65 .3 )  = 4. 1 79 .  The standard error of this log rate is : 

s .e .  ( log rate) = l /vd = 1 /./57 = 0. 1 32 

1 The 95 % confidence interval for the log rate is therefore: 

95 % CI = 4. 1 79 - ( l .96 x 0. 1 32) to 4. 1 79 + ( l .96 x 0. 1 32 )  = 3 .9 1 9  to 4.438 

The 95 % confidence interval for the rate is: 

95 % CI = exp(3 .9 1 9) to exp(4.438) = 50.36 to 84.65 infections per 

1 000 child-years 

2 Alternatively, we may calculate the 95 % CI using the 95 % error factor (EF) for 
the rate: 
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E F  = exp( l .96/ Jd) = exp( l .96/ J57) = 1 . 296 

The 95 % confidence i n terval for the rate is: 

}, 95 % CI = 
EF to }, x EF = 65 .3/ 1 .296 to 65 .3 x 1 . 296 

= 50.36 to 84.65 infections per I 000 child-years 
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Mantel-Haenszel RR 

Mantel-Haenszel x2 test of the null 

hypothesis 

Test for effect modification (interaction) 

I n  this chapter we describe the two measures used to compare rates in different  
exposure groups: the rate difference and the rate ratio. We then show how to 
use Mantel-Haenszel methods to estimate rate ratios contro l ling for confounding 
factors. In Part C we emphasized the similarity between Man tel-Haenszel 
methods, which use stratification to estimate odds ratios for the effect of exposure 
contro lled for the effects of confounding variables, and logistic regression 
models. Mantel-Haenszel methods for rate ratios are closely related to the corres
ponding regression model for rates, Poisson regression, which is introduced in  
Chapter 24. 

2 3 . 2  C O M PA R I N G  TWO R A T E S  

We now see how the rates o f  disease in  two exposure groups may be  compared, 
using two different measures: the rate difference and the rate ratio. 

Rate differences 

Example 23. 1 
The children in the Guatemala morbidity study analysed in Example 22. 1 were 
subdivided according to the quality of their housing conditions. The data are 
shown in Table 23 . 1 ,  together with the notation we wil l use. We will consider 
children l iving in poor housing condi tions to be the exposed group and, as in Part 
C, denote exposed and unexposed groups by the subscripts I and 0 respectively. 
The rate difference comparing poor with good housing is  93.0 - 46 .3 = 46 .7  
infections per 1 000 child-years. 
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Table 23.1 Incidence of lower respiratory infection among children aged less than 5 years, according to 

their housing conditions. 

Housing condition 

Number of acute lower 

respiratory infections Child-years at risk Rate/1 000 chi ld-years 

Poor (exposed) 

Good (unexposed) 

Total 

d, = 33 

do = 24 

r, = 355 

To = 5 1 8  

T =  873 

The standard error of a rate difference is :  

. /(d1 do ) s.e . (rate difference) = . 2 + -2 T1 To 

A., = 93.0 

A.o = 46.3 

A. =  65.3 

This can be used in the usual way to derive a 95 %confidence interval .  In this example, 

s .e .  = / (�� + ��) = j (3��2 + 5�:2) x 1 000 

= 1 8 .7  infections per 1 000 child-years 

and the 95 % confidence interval is : 

46 .7  - l .96 x 1 8 . 7  to 46 . 7 + l .96 x 1 8 . 7  
= l 0.0 to 83 .4  infections per l 000 child-years 

With 95 % confidence, the rate of lower respiratory infections among children 
living in poor housing exceeds the rate among children living in good housing by 
between 1 0.0 and 83 .4 infections per 1 000 child-years. 

Rate ratios 

As explained in more detail in the next chapter, the analysis of rates is usually 
done using rate ratios rather than rate differences. The rate ratio is  defined as: 

R 
. rate in  exposed '1. 1  ate ratio = --.-----rate 1 11 unexposed Ao 

As for risk ratios and odds ratios, we use the standard error of the log rate ratio to 
derive confidence intervals, and tests of the null hypothesis of no difference 
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between the rates in the two groups. This (again derived using the delta method) is 
given by: 

s .e .  of log(rate ratio) = J( l /d1 + l /do) 

The 95 % confidence interval for the rate ratio is :  

95 % CI = rate ratio/EF to rate ratio x EF, where 

EF = exp[ l .96 x s.e. of log(rate ratio)] 

z-test for the rate ratio 

A z-test (Wald test, see Chapter 28) of the null hypothesis that the rates in the two 
groups are equal is given by: 

log( rate ratio) Z = --------S .e .  of log( rate ratio) 

Example 23. 1 (continued) 
The rate ratio comparing children living in poor housing with those living in good 
housing is : 

. 33/355 rate ratio = 2415 1 8  = 2 .0 1 

The standard error of the log(rate ratio) is J( l /33 + 1 /24) = 0.268, and the 95 % 
error factor is: 

95 % EF = exp( l .96 x 0.268) = 1 . 69 

A 95 % confidence interval for the rate ratio is thus: 

95 % CI = 2.0 l / l .69 to 2.0 1 x 1 . 69 = l . 1 9 to 3 .39 
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With 95 % confidence, the rate of acute lower respiratory infections among 
children living in poor housing is between 1 . 1 9  and 3 .39 t imes the rate among 
chi ldren living in good housing. The :: statistic is log(2 .0 l )/0.268 = 2 .60; the 
corresponding P value is 0 .009. There is therefore good evidence against the nul l  
hypothesis that infection rates are the same among children l iv ing in good and 
poor quality housing. 

Relationship between rate ratio, risk ratio and odds ratio 

From Chapter 1 6, we know that for a rare event the risk ratio is approximately 
equal to the odds ratio. And in the last chapter we saw that for a rare event, risk up 
to time I approximately equals },/ .  It therefore fol lows that for a rare event the risk 
ratio and rate ratio are also approximately equal: 

R . k . J, i t }q R 
. Odd . 1s rat10 � 1 = 1  = ate ratio � s ratio AQ I AO 

However when the event is not rare the three measures wil l  al l be different .  These 
d ifferent measures of the association between exposure and outcome event, and of 
the impact of exposure, are discussed in more detail in Chapter 37 .  

2 3 . 3  M A N T E L- H A E N S Z E L  M E T H O D S  F O R  RATE R AT I O S  

Recall from Chapter 1 8  that a confounding variable i s  one that i s  related both to 
the outcome variable and to the exposure of interest ( see Figure 1 8 . 1  ), and that is 
not a part of the causal pathway between them. Ignoring the effects of confound
ing variables may lead to bias in our estimate of the exposure-outcome associ
ation. We saw that we may allow for confounding in  the analysis via stratification: 

restricting estimation of the exposure-outcome association to individuals with the 
same value of the confounder. We then used Mantel-Haenszel methods to com
bine the stratum-specific estimates, leading to an estimate of the summary odds 
ratio, control led for the confounding. 

We now present Mantel-Haenszel methods for rate ratios. Table 23.2 shows the 
notation we will use for the number of events and person-years in each group, i n  
stratum i. The notation is exactly the same a s  that in Table 23 . 1 ,  but with the 
subscript i added, to refer to the stratum i. 

Table 23.2 Notation for the table for stratum i. 

Group 1 (Exposed) 

Group 0 (Unexposed) 

Total 

Number of events 

di; 
do; 

d; = do; + d1; 

Person-years at risk 

Tli 
To; 

T; = To; + Ti; 
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The data consist of c such tables, where c is the number of different values the 
confounding variable can take. The estimate of the rate ratio for stratum i is 

RR; = di ;/ T1 ;  = d1 ; x To; 
do;/ To; do; x T1 ; 

Mantel-Haenszel estimate of the rate ratio controlled for confounding 

As for the odds ratio, the Mantel-Haenszel estimate of the rate ratio is a 1veighted 
average (see Section 1 8 . 3 )  of the rate ratios in each stratum. The weight for each 
rate ratio is :  

do; x Ti ; W; = --
T; 

Since the numerator of the weight is the same as the denominator of the rate ratio 
in stratum i, iv; x R R; = (di ; x To;)/T; . These weights therefore lead to the 
fol lowing formula for the Mantel-Haenszel estimate of the rate ratio: 

" d1 ; x To; 
L:(w; x R R;) � T; RRMH = = -----

L:w; "'\" do; x T1 ; 
� T; 

Following the notation of Clayton and Hil ls ( l  993) ,  this can a lternatively be 
written as: 

Example 23.2 

RRMH = Q/ R, where 

Q = " d1 ; x To; and R = " do; x T1 ;  
� T; � T; 

Data on incidence of acute lower respiratory infections from a study in Guatemala 
were presented in Example 23 . 1  and Table 23. 1 .  The rate ratio comparing children 
l iving in poor with good housing conditions is 2 .0 1  (95 % CI 1 . 1 9 to 3 .39 ) .  Table 
23.3 shows the same information, stratified additionally by the type of cooking 
stove used in  the household. 
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Table 23.3 Association between incidence of acute lower respiratory infection and housing conditions, stratified 

by type of cooking stove. 

(a) Wood burning stove (stratum 1 )  

Housing condition Number of infections Chi ld-years at risk Rate/1 000 child-years 

Poor (exposed) d1 1 = 28 T1 1 = 251 
Good (unexposed) do1 = 5 To1 = 52 

Total di = 33 T1 = 303 

Rate ratio = 1 . 1 6  (95% Cl 0.45 to 3.00), P = 0.  76 

(b) Kerosene or gas stove (stratum 2) 

1'1 1 = 1 1 1 .6 

1'01 = 96.2 

1'1 = 1 08 .9 

Housing condition Number of infections Child-years at risk Rate/1 000 child-years 

Poor (exposed) 

Good (unexposed) 

Overall 

d1 1 = 5 
do2 = 1 9  

T12 = 1 04 
To2 = 466 

Rate ratio = 1 . 1 8  (95% Cl 0.44 to 3 . 1 6), P = 0. 74 

Table 23.4 Person-years of observation according to housing conditions 

and type of cooking stove. 

Housing condition 

Poor (exposed) 

Good (unexposed) 

Type of stove 

Wood burning stove 

T1 1 = 251 

T10 = 52 

Gas or kerosene stove 

T21 = 1 04 
T20 = 466 

1'1 2 = 48.1 

1\02 = 40.8 

1\2 = 42 . 1  

Examination of the association between quality of housing and  infection rates 
in the two strata defined by type of cooking stove shows that there is l ittle evidence 
of an association in either stratum. Type of cooking stove is a strong confounder 
of the relationship between housing quality and infection rates, because most poor 
quality houses have wood burning stoves while most good quality houses have 
kerosene or gas stoves. This can be seen by tabulat ing the person-years of obser
vation according to housing condition and cooking stove, as shown in Table 23.4.  

Table 23 . 5  shows the calculations needed to derive the Mantel-Haenszel rate 
ratio combining the stratified data, presented in Table 23 .3 ,  on the association 
between housing conditions (the exposure variable) and the incidence of acute 
lower respiratory infection (the outcome), control l ing for type of stove. 

The Mantel-Haenszel estimate of the rate ratio equals: 

RRMH = Q/R = 8 .89/7 .6 1 = 1 . 1 7 
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Table 23.5 Calculations required to derive the Mantel-Haenszel summary rate ratio, with associated confidence 

interval and P value. 

Stratum i RR; dwx T, .  W; = Ti 1 w; x RR; V; dli f1; 

Wood stove (i = 1 )  1 . 1 6  4. 1 4  4.81 4.69 28 27.34 

Kerosene/gas (i = 2) 1 . 1 8  3.47 4.09 3.58 5 4.38 

Total R = 7.61 Q = 8.89 v = 8.27 0 = 33 f = 3 1 .72 

After control l ing for the confounding effect of type of stove, the rate of infection is 
only sl ightly ( 1 7  %) greater among children living in poor housing conditions 
compared to children living in good housing conditions. 

Standard error and confidence interval for the Mantel-Haenszel RR 

As is usual for ratio measures, the 95 % confidence interval for RRMH is derived 
using the standard error of log(RRMH), denoted by s .e .MH .  

95 % CI = RRMH/EF to  RRMH x EF, where 

the error factor EF = exp( l .96 x s .e .MH )  

The simplest formula for the standard error of log R RMl-I (Clayton and Hi lls 1 993) 
is :  

s .e .M1-1 = J (Q: R) , where 

d x T1 · x Tio · 
V " V d ff, - I I I = u ;, an y ,  -

T� I 

V is the sum across the strata of the variances V; for the number of exposed 
individuals experiencing the outcome event, i.e. the variances of the dli's. Note 
that the formula for the variance V; of dl i for stratum i gives the same value 
regardless of which group is considered as exposed and which is considered as 
unexposed. 

Example 23.2 (continued) 
Using the results of the calculations for Q, R and V shown in Table 23 .5 ,  we find 
that: 
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so that EF = exp( l .96 x 0 .35)  = l .98, RRM1-1 /EF = 1 . 1 7/ 1 .98 = 0 .59 , and 
RRMH x EF = 1 . 1 7  x 1 . 98 = 2 .32 .  The 95 % confidence interval is therefore: 

95 % Cl for RRM1-1 = 0.59 to 2 .32 

Mantel-Haenszel x2 test of the null  hypothesis 

Finally, we test the nul l  hypothesis that RRM1-1 = I by calculating the Mantel

Haenszel x
2 test statistic: 

( 0 - E)2 
= 

u2
; d . f. = 1 v v 

This is based on a comparison in each stratum of the number of exposed individ
uals observed to have experienced the disease event (d1 ; )  with the expected number 
in this category (E1 ;) if there were no difference in the rates between the exposed 
and unexposed. The expected numbers are calculated in the same way as for the 
standard x2 test described in Chapter 1 7 . 

The formula has been simplified by writing 0 for the sum of the observed 
numbers, E for the sum of the expected numbers and U for the difference between 
them: 

0 = Edli, E = Z:,E1; and U = D - E 

Note that X�1-1 has just 1 degree of fi"eedom irrespective of ho1v many strata are 
summarized. 

Example 23.2 (continued) 
From the data presented in Table 23 .5 ,  a total of 0 = 33 children l iving in poor 
housing experienced acute lower respiratory infections, compared with an 
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expected number of 3 1 .72, based on assuming no difference in  rates between poor 
and good housing. Thus the Mantel-Haenszel x2 statistic is :  

2 = 
U2 

=
(33 - 3 l -72)2 = O ?O ( l d f  P = 0 655 )  XMH V 8.27 ·-

. .  , . 

After contro l l ing for type of cooking stove, there is no evidence of an association 
between qual ity of housing and incidence of lower respiratory infections. 

Test for effect modification (interaction) 

Use of Mantel-Haenszel methods to control for confounding assumes that the 
exposure-outcome association is the same in each of the strata defined by the levels 
of the confounder, in other words that the confounder does not modify the effect 
of the exposure on the outcome event. If  this i s  t rue, RR; = R RMH , and it fol lows 
that: 

The x2 test for heterogeneity is based on a weighted sum of the squares of these 
differences: 

2 _ ,, (d1 ; x To; - RRMH x do; x T1 ,)2 
X - u 

RR 2 , d . f. = c - l 
MH x V; x T; 

where V; is as defined above, and c is the number of strata. The greater the 
d ifferences between the stratum-specific rate ratios and RRMH ,  the larger will be 
the heterogeneity statistic. 

Example 23.2 (continued) 
The rate ratios in  the two strata were very similar ( 1 . 1 6  in houses with wood
burning stoves and J . 1 8  in houses with kerosene or  gas stoves) .  We do not, 
therefore, expect to find evidence of effect modification . Application of the 
formula for the test for heterogeneity gives x2 = 0 .0005 ( I  d.f . ) ,  P = 0 .98 .  There 
is thus no evidence that type of cooking stove modifies the association between 
quality of housing and rates of respiratory infections. 
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2 4 . 1  I N T R O D U C T I O N  

I n  this chapter we introduce Poisson regression for the analysis o f  rates. This is 
used to estimate rate ratios comparing different exposure groups in the same way 
that logistic regression is used to estimate odds ratios comparing different exposure 
groups. We wil l  show how it can be used to: 
• compare the rates between two exposure (or treatment) groups 
• compare more than two exposure groups 
• examine the effect of an ordered or continuous exposure variable 
• control for the confounding effects of one or more variables 
• estimate and control for the effects of exposures that change over time 

We wil l  see that Poisson regression models comparing two exposure groups give 
identical rate ratios, confidence intervals and P-values to those derived using the 
methods described in Section 23 .2 .  We will also see that Poisson regression to 
control for confounding is closely related to the Mantel-Haenszel methods for 
rate ratios, described in Section 23 .3 .  Finally, we will show how to estimate and 
control for the effects of variables that change over time, by splitting the fol low-up 
time for each subject. 

Like logistic regression models, Poisson regression models are fitted on a log 
scale. The results are then antilogged to give rate ratios and confidence i ntervals .  
Since the principles and the approach are exactly the same as those outl ined for 
logistic regression in Part B, a more concise treatment will be given here; readers 
are referred to Chapters 1 9  and 20 for more deta i l .  More general issues in 
regression modelling are d iscussed in Chapter 29. 
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2 4 . 2  P O I S S O N  R E G R E S S I O N  F O R  C O M PA R I N G  T W O  E X P O S U R E  
G R O U P S 

Introducing the Poisson regression model 

The exposure rate ratio i s  defined as: 

. rate in exposed group 
Exposure rate ratio = --.-------

rate 111 unexposed group 

If we re-express this as: 

Rate in exposed group = Rate in unexposed group x Exposure rate ratio 

then we have the basis for a model which expresses the rate in each group in terms 
of two model parameters. These are: 
1 The baseline rate. As in Chapters 1 9  and 20, we use the term baseline to  refer to 

the exposure group against which all the other groups are compared. When 
there are just two exposure groups, then the baseline rate is  the rate in  the 
unexposed group. We use the parameter name Baseline to refer to the rate i n  
the basel ine group. 

2 The exposure rate ratio. This expresses the effect of the exposure on the rate of 
disease. We use the parameter name Exposure to refer to the exposure rate 
ratio. 

As with logistic regression, Poisson regression models are fitted on a log scale. The 
two equations that define this model for the rate of an outcome event are shown in  
Table 24. 1 ,  together with the corresponding equations for the log rate. The 
equations for the rate can be abbreviated to :  

Rate = Baseline x Exposure 

The two equations that define the Poisson regression model on the log scale can be 
written : 

log(Rate) = log(Baseli ne) + log(Exposure rate ratio) 

Table 24.1 Equations defining the Poisson regression model for the comparison of two exposure groups. 

Exposure group Rate Log rate 

Exposed (group I ) Baseline rate x exposure rate ratio Log(baseline rate) + log( exposure rate ratio) 

U nexposed ( group 0) Baseline rate Log(baseline rate) 
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In practice, we abbreviate i t  to: 

log(Rate) = Baseline + Exposure 

since it is clear from the context that output on the log scale refers to log rate and 
log rate ratios. Note that whereas the exposure effect on the rate ratio scale i s  
multiplicative, the  exposure effect on  the log scale is additive. 

Example 24. 1 
All the examples in this chapter are based on a sample of 1 786 men who took part 
in  the Caerphil ly study, a study of risk factors for cardiovascular d isease. Partici
pants were aged between 43 and 61 when they were first examined, and were 
fol lowed for up to 1 9  years. The first examinations took place between July 1 979 
and October 1 983, and the follow-up for the outcome (myocardial infarction or 
death from heart d isease) ended in February 1 999. Further information about the 
study can be found at www.epi . bris .ac.uk/mrc-caerphi l ly .  

The first ten l ines of the dataset are shown in Table 24.2 .  Variable 'cursmoke', 
short for current smoker at recrui tment, was coded as 1 for subjects who were 
smokers and 0 for subjects who were non-smokers, and variable ' M I' was coded 
as 1 for subjects who experienced a myocardial infarction or d ied from heart 
d isease during the fol low-up period and 0 for subjects who did not. Variable 
'years' is the years of fol low-up for each subject ( the time from examdate to 
exitdate); i t  was derived using a statistical computer package, as described in 
Section 22.2. 

There were 990 men who were current smokers at the time they were recruited 
into the study, and 796 men who had never smoked or who were ex-smokers. 
Table 24. 3  shows rates of myocardial infarction in these two groups. The rate ratio 
comparing smokers with never/ex-smokers is 1 6 .98/9 .68 = 1 .  700. 

Table 24.2 First ten l ines of the computer dataset from the Caerphilly study. Analyses of the Caerphilly study 

are by kind permission of the MRC Steering Committee for the Management of MRC Epidemiological Resources 

from the MRC Epidemiology Unit (South Wales). 

id dab examdate exitdate years Ml  curs make 

20/May/1 929 1 7  /Jun/1 982 31 /Dec/1 998 1 6.54 0 

2 9/Jul/1 930 1 0/Jan/1 983 24/Dec/1 998 1 5.95 0 0 
3 6/Feb/1 929 23/Dec/1 982 26/Nov/1 998 1 5.93 0 1 

4 24/May/ 1 93 1  7 /Jul/1 983 22/Nov /1 984 1 .38 0 
5 9/Feb/1 934 3/Sep/ 1 980 1 9/Dec/1998 1 8.29 0 0 

6 1 4/Mar/1 930 1 7  /Nov /1 981 31  /Dec/1 998 1 7. 1 2  0 0 
7 1 3/May/1 933 30/0ct/1 980 27 /Dec/1998 1 8. 1 6 0 

8 23/May/1 924 24/ Apr /1 980 24/Jan/1 986 5.75 
9 20/Jun/1 931 1 1 /Jun/1 980 1 2/Dec/1 998 1 8.50 0 
1 0  1 2  /May /1 929 1 7  /Nov /1 979 20/Jan/1 995 1 5 . 1 8  0 
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Table 24.3 Rates of myocardial infarction among men who were and were not current smokers at the time 

they were recruited to the Caerphilly study. 

Current smoker at Number of myocardial 

entry to the study infarctions Person-years at risk Rate per 1 000 person-years 

Yes (exposed) d, = 230 r, = 1 3  978 x., = 230/1 3 .978 = 1 6.98 

No (unexposed) do = 1 1 8  To = 1 2  1 83 X.0 = 1 1 8/ 1 2 . 1 83 = 9 .68 

Overall d = 348 T = 26 1 61 A. =  348/26 1 61 = 1 330 

We will now show how to use Poisson regression to examine the association 
between smoking and rates of myocardial infarction in these data. To use a 
computer package to fit a Poisson regression model, it is necessary to specify 
three items: 
1 The name of the outcome variable, which in this case is M I .  If each line of the 

dataset represents an individual (as is the case here) then the outcome variable is  
coded as I for individuals who experienced the event and 0 for i ndividuals who 
did not experience the event. If data have been grouped according to the values of 
different exposure variables then the outcome contains the total number of 
events in  each group . 

2 The total exposure time, for the individual or the group (depending on whether 
each line in the dataset represents an individual or a group) .  As will be explained 
in Section 24.3 ,  this is used as an offset in the Poisson regression model. 

3 The name of the exposure variable(s) . In this example, we have just one exposure 
variable, which is called cursmoke. The required convention for coding i s  that 
used throughout this book; thus cursmoke was coded as 0 for men who were 
never/ex-smokers at the start of the study (the unexposed or baseline group) and 
l for men who were current smokers at the start of the study (the exposed 
group). 

The Poisson regression model that will be fitted is: 

Rate of myocardial infarction = Baseline x Cursmoke 

I ts two parameters are: 
1 Baseline: the rate of myocardial infarction in the baseline group (never/ex

smokers), and 
2 Cursmoke: the rate ratio comparing current smokers with never/ex-smokers. 

Output on the ratio scale 

Table 24.4 shows the computer output obtained from fitting this model. The two 
rows in the output correspond to the two parameters of the logistic regression 
model; cursmoke is our exposure of interest and the constant term refers to the 
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Table 24.4 Poisson regression output for the model relating rates of myocardial infarction with smoking at 

the time of recruitment to the Caerphilly study. 

Cursmoke 

Constant 

Rate ratio 

1 .700 

0.00969 

z 

4.680 

-50.37 

P > lzl 

0.000 

0.000 

95% Cl 

1 .361 to 2 . 1 2 1  

0.00809 to  0.01 1 6  

baseline group. The same format i s  used for both parameters, and i s  based on 
what makes sense for interpretation of the effect of exposure. This means that 
some of the information presented for the constant (baseline) parameter is not of 
interest .  

The column labelled 'Rate Ratio' contains the parameter estimates: 

1 For the first row, label led 'cursmoke', this is the rate rario ( l . 700) comparing 
smokers at recru i tment with never/ex-smokers. This is identical to the rate ratio 
that was calculated directly from the raw data (see Table 24. 3 ) .  

2 For  the  second row, labelled 'constant' ,  this is the rate of myocardial 
infarction in the baseline group (0 .00969 = 1 1 8/ 1 2 1 83 ,  see Table 24.3 ) . As we 
explained in the context of logistic regression, this apparently inconsistent 
labell ing is  because output from regression models is labelled in a uniform 
way. 

The remaining columns present z statistics, P-values and 95 % confidence intervals 
corresponding to the model parameters. They will be explained in  more detail after 
the explanation of Table 24. 5  below. 

Output on the log scale 

Table 24.5 shows Poisson regression output, on the log scale, for the association 
between smoking and rates of myocardial infarction. The model is: 

Log(Rate) = Baseline + Cursmoke 

where 
• Baseline is  the log rate of myocardial infarction in never/ex-smokers, and 
• Cursmoke is the log rate ratio comparing the rate of myocardial infarction in 

smokers with that i n  never/ex-smokers. 

Tabl e  24.5 Poisson regression output (log scale) for the association between smoking and 

rates of myocardial infarction. 

Coefficient s.e. z P > lz l 95% C l  

Cursmoke 0.530 0 . 1 1 3  4.680 0.000 0.308 to 0. 752 
Constant -4.64 0.092 -50.37 0.000 -4.82 to -4.45 
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The interpretation of this output is very similar to that described for  logistic 
regression in  Chapter 1 9; readers are referred there for a more detailed discussion 
of all components of the output. 
1 The first column gives the results for the regression coefficients (corresponding 

to the parameter estimates on a log scale). For the row labelled 'cursmoke' this 
is  the log rate ratio comparing smokers with non-smokers. It agrees with what 
would be obtained if i t  were calculated directly from Table 24.3 :  

log rate ratio = log( l 6.98/9.68) = log( l . 70) = 0 .530 

For the row labelled 'constant', the regression coefficient is  the log rate in the 
baseline group,  i .e. the log rate of myocardial infarction among non-smokers: 

log rate = log( l 1 8/ 1 2 1 83 )  = log(0.00969) = -4.637 

2 The second column gives the standard errors of the regression coefficients. For a 
binary exposure variable, these are exactly the same as those derived using the 
formulae given in Section 23.2. Thus: 

s .e . ( log rate ratio) = J( 1 /d1 + I /do ) =  y'( J / 1 1 8  + 1 /230) = 0. 1 1 3 

s .e . ( log rate in never/ex-smokers) = y'( J /do ) = y'( l / 1 1 8 ) = 0.092 

3 The 95 % confidence intervals for the regression coefficients in the last column 
are derived in  the usual way. For the log rate ratio comparing smokers with 
never/ex-smokers, the 95 % CI  is :  

95 % CI = (0 .530 - ( 1 .96 x 0. 1 1 3) )  to (0. 530 + ( 1 .96 x 0 . 1 1 3 ) )  

= 0.308 to  0.752 

4 Each z statistic in  the third column is the regression coefficient divided by its 
standard error. They can be used to derive a Wald test of the nul l  hypothesis 
that the corresponding regression coefficient = 0. 

5 The P-values in  the fourth column are derived from the z statistics in  the usual 
manner (see Table A l  in the Appendix) and can be used to test the nul l  
hypothesis that the true (population) value for the corresponding population 
parameter is zero. For example the P-value of 0.000 ( i .e .  < 0.00 1 )  for the log 
rate ratio comparing smokers with never/ex-smokers indicates that there is 
strong evidence against the null hypothesis that rates of myocardial infarction 
are the same in smokers as in  non-smokers. 

As previously explained in the context of logistic regression, we are usually 
not interested in  the z statistic and corresponding P-value for the constant 
parameter. 
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Relation between outputs on the ratio and log scales 

As with logistic regression, the results in Table 24.4 (output on the original ,  or 
ratio, scale) are derived from the results in Table 24. 5 (output on the log scale) .  
Once the derivation of the ratio scale output is understood, i t  is rarely necessary to 
refer to the log scale output: the most useful results are the rate ratios, confidence 
intervals and ?-values d isplayed on the ratio scale, as in Table 24.4. Note that the 
output corresponding to the constant term (basel ine group) is often omitted from 
computer output, since the focus of interest is on the parameter estimates ( rate 
ratios) comparing the different groups. 
1 In Table 24.4, the col umn label led 'Rate Ratio' contains the exponentials 

(anti logs) of the Poisson regression coefficients shown in  Table 24.5 .  Thus the 
rate ratio comparing smokers with never/ex-smokers = exp(0 .530) = 1 .700. 

2 The z statistics and ?-values are derived from the regression coefficients and 
their standard errors, and so are identical in the two tables. 

3 The 95 % confidence intervals in Table 24.4 are derived by anti logging 
(exponentiating) the confidence intervals on the log scale presented in  Table 
24. 5 .  Thus the 95 % CI for the rate ratio comparing smokers with never/ex
smokers is :  

95 % C I = exp(0.308) to exp(0 . 752) = 1 . 36 1 to 2 . 1 2 1  

This is identical to the 95 % C I  calculated using the methods described i n  Section 
23 .2 .  

95 % CI  for rate ratio = rate ratio/EF to rate ratio x EF 

where the error factor EF = exp( l .96 x s .e .  ( log rate rat io)) .  Note that s ince the 
calculations are multipl icative: 

Rate ratio Upper confidence l imit 
Lower confidence l imit Rate ratio 

This can be a useful check on confidence limi ts presented in  tables in published 
papers. 

2 4 . 3  G E N E R A L  F O R M  O F  T H E  P O I S S O N  R E G R E S S I O N  M O D E L  

The general form of the Poisson regression model i s  similar to that for logistic 
regression (Section 1 9 . 3 )  and that for multiple regression (Section 1 1 .4) .  It relates 
the log rate to the values of one or more exposure variables: 
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The quantity on the right hand side of the equation is known as the linear predictor 

of the log rate, given the particular value of the p exposure variables x1 to Xp . The 
{J's are the regression coefficients associated with the p exposure variables. 

Since log(rate) = log(d/ T) = log(d) - log( T), the general form of the Poisson 
regression model can also be expressed as: 

The term log( 1) is known as an offset in the regression model .  To use statistical 
packages to fit Poisson regression models we must specify the outcome as the 
number of events and give the exposure time T, which is then included in the offset 
term, log( 1). 

We now show how this general form corresponds to the model we used in 
Section 24.2 for comparing two exposure groups. The general form for comparing 
two groups is: 

where x1 ( the exposure variable) equals I for those in the exposed group and 0 for 
those in the unexposed (baseline) group. 

Using a similar argument to that given in Section 1 9 .3  in the context of logistic 
regression models, it is straightforward to show that: 
1 [30 (the intercept) corresponds to the log rate in the unexposed (baseline) group, 

and 
2 {3 1  corresponds to the log of the rate ratio comparing exposed and unexposed 

groups ( the exposure rate ratio) .  
The equivalent model on the ratio scale is :  

Rate of disease = exp(,80) x exp(f31 x1 ) 

In this mullijJlicative model exp(f30) corresponds to the rate of disease 111 the 
basel ine group, and exp(f3 1 ) to the exposure rate ratio. 

2 4 . 4  P O I S S O N  R E G R E S S I O N  F O R  CAT E G O R I CA L  A N D  C O N T I N U O U S  
E X P O S U R E  VA R I A B L E S  

We now consider Poisson regression models for categorical exposure variables 
with more than two levels, and for ordered or continuous exposure variables. The 
principles have already been outl ined in detail in Chapter 1 9, in the context of 
logistic regression. The application to Poisson regression will be i llustrated by 



24.4 Poisson regression for categorical and continuous exposure variables 257 

examining the association between social class and rates of myocardial infarction 
in the Caerphil ly study. 

Poisson regression to compare more than two exposure groups 

To examine the effect of categorical exposure variables in Poisson and other regres
sion models, we look at the effect of each level compared to a baseline group. This is 
done using indicator variables, which are created automatically by most statistical 
packages, as explained in more detail in Box 1 9. 1  on page 200. 

Example 24.2 
In the Caerphilly study, a Poisson regression model was fitted to investigate the 
evidence that rates of  myocardial infarction were higher among men in less 
privi leged social classes. Table 24.6  shows the output, with the social class vari
able, socclass, coded from I = social class I (most affluent) to 6 = social class V 
(most deprived) .  The model was fitted with social class group I l l  non-manual as 
the baseline group, since this was the largest group in the study, comprising 925 
(5 1 . 8 %) of the men. The regression confirms that there is a pattern of  increasing 
rates of myocardial infarction in more deprived social classes. This t rend is 
investigated further in  Table 24.7 below. 

Note that some statistical computer packages will allow the user to specify 
which exposure group is to be treated as the baseline group. In other packages, 
it may be necessary to recode the values of the variable so that the group chosen to 
be the basel ine group has the lowest coded value. 

Table 24.6 Poisson regression output for the effect of social class on the rate of myocardial infarction. The model 

has six parameters: the rate in  the baseline group (rate not shown in the table) and the five rate ratios comparing 

the other groups with this one. It can be written in abbreviated form as: Rate = Baseline x Socclass. 

Rate ratio z P > lzl 95% Cl 

Socclass(1 ), I 0.403 -2.36 0.01 8 0.1 90 to 0.857 

Socclass(2), I I  0.759 -1 . 75 0.080 0.557 to 1 .034 

Socclass(3), Ill non-manual 1 (baseline group) 

Socclass(4), I l l  manual 0.956 -0.25 0.802 0.675 to 1 .355 

Socclass(5), IV 0.965 -0.21  0.836 0.693 to 1 .344 

Socclass(6), V 1 .3 1 6  1 . 1 4  0.253 0.821 to 2 . 1 09 

Poisson regression for ordered and continuous exposure variables 

Example 24.2 (continued) 
To investigate further the tendency for increasing rates of myocardial infarction 
with increasing deprivation, we can perform a test for trend by fitt ing a Poisson 
regression model for the l inear effect of social class. This wil l assume a constant 
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Table 24.7 Poisson regression output for the model for the linear effect of social class on rates of myocardial 

infarction: Rate = Baseline x [Socclass]. where [Socclass] is the rate ratio per unit increase in  social class. 

Rate ratio z P > izl 95% Cl 

Socclass 1 . 1 1 7  2.41 1 0.01 6 1 .021 to 1 .223 

increase in  the log rate ratio for each unit increase in social class, and correspond
ingly a constant rate ratio per increase in social class. The results are shown in  
Table 24.7 .  The estimated rate ratio per un i t  increase i n  social class is  1 . 1 1 7  (95 % 
C I  1 .02 1 to 1 .223, P = 0 .0 1 6) .  There is some evidence of an association between 
increasing social deprivation and increasing rates of myocardial infarction. 

2 4 . 5  P O I S S O N  R E G R E S S I O N :  C O N T R O L L I N G  F O R  C O N F O U N D I N G  

Readers are referred t o  Chapter 20 for a detailed d iscussion o f  how regression 
models control for confounding in  a manner that is analogous to the strati fication 
procedure used in  Mantel-Haenszel methods. Both methods assume that the true 
exposure effect comparing exposed with unexposed individuals is the same in  each 
of the strata defined by the levels of the confounding variable. 

Example 24.3 
In Section 24.4 we found evidence that rates of myocardial infarction in the 
Caerphi l ly study increased with increasing social deprivation. There was also a 
clear association (not shown here) between social class and the prevalence of 
smoking at the t ime of recruitment, with higher smoking rates among men of 
less privileged social classes. I t  is  therefore possible that social class confounds the 
association between smoking and rates of myocardial infarction. We wil l examine 
this using both Mantel-Haenszel and Poisson regression analyses to estimate the 
rate ratio for smoking after controlling for social class. We wil l  then compare the 
results .  

Table 24.8 shows the rate ratios for smokers compared to non-smokers i n  strata 
defined by social class, together with the Mantel-Haenszel estimate of the rate 
ratio for smoking controll ing for social class. This equals 1 .65 (95 % CI 1 . 32  to 
2.06), only sl ightly Jess than the crude rate ratio of 1 . 70 (see Table 24.4) . It appears 
therefore that social class is not an important confounder of the association 
between smoking and rates of myocardial infarction. 

Table 24.9 shows the output (on the rate ratio scale) from the correspond
ing Poisson regression. This model assumes that the rate ratio for smoking is the 
same regardless of social class, and (correspondingly) that the rate ratios for social 
class are the same regardless of smoking. The estimated rate ratio for smoking 
controlled for social class is 1 .645 , almost identical to the Mantel-Haenszel 
estimate (see Table 24.8 ) .  There is also litt le difference between the crude 
effect of social class (Table 24.6) and the effect of social class control l ing for 
smoking. 
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Table 24.8 Rate ratios for the association of smoking with rates of myocardial infarction in the Caerphilly 

study, separately in social class strata, together with the Mantel-Haenszel estimate of the rate ratio for 

smoking control l ing for social class. 

Social class stratum 

I (most affluent) 

I I  

I l l  non-manual 

Il l manual 

IV 

V (least affluent) 

Mantel-Haenszel estimate of the rate ratio for smokers 

compared to non-smokers, controll ing for social class 

Rate ratio (95% Cl) for smokers 

compared to non-smokers 

2.07 (0.46 to 9.23) 

1 .49 (0.86 to 2 .58) 

1 .68 (1 .23 to 2.30) 

1 .38 (0. 73 to 2.62) 

1 .75 (0.91 to 3 .35) 

2 . 1 5 (0.77 to 5.96) 

1 .65 (1 .32 to 2.06) 

x2 for heterogeneity of rate ratios = 0.82 (d.f. = 5, P = 0.98) 

Tab le  24 .9 Poisson regression output for the model including both current 

smoking and social class. The model can be written in abbreviated form as 

Rate = Baseline x Cursmoke x Socclass, where the baseline group are non

smokers in  Socclass (3). 

Rate ratio z P > lz l 95% Cl 

Cursmoke 1 .645 4.351 0.000 1 .3 1 5  to 2.058 

Socclass(l ) 0.445 -2. 1 03 0.035 0.209 to 0.946 

Socclass(2) 0.830 - 1 . 1 76 0.240 0.608 to 1 . 1 33 

Socclass(4) 1 .0 14  0.075 0.940 0.71 5 to 1 .437 

Socclass(5) 0.976 -0. 1 42 0.887 0. 701 to 1 .359 

Socclass(6) 1 .333 1 . 1 94 0.232 0.832 to 2 . 1 36  

Note the different forms of the output for the Mantel-Haenszel and Poisson 
regression approaches. The Mantel-Haenszel output shows us stratum-specific 
effects of the exposure variable, which draws our attention to differences between 
strata and reminds us that when we control for smoking we assume that the effect 
of smoking is the same in different social classes. The Poisson regression output 
shows us the effect of smoking contro l led for social class, and the effect of social 
class controlled for smoking. However, we should be aware of the need to test the 
underlying assumption that the effect of each variable is the same regardless of the 
value of the other: that is  that there is no effect modification, also known as 
interaction. For Mantel-Haenszel methods this was described in Section 23 .3 .  
We see how to  examine interaction in  regression models in Chapter 29. 

2 4 . 6  S P L I T T I N G  F O L L O W - U P  T O  A L L O W  F O R  VA R I A B L E S  W H I C H  
C H A N G E  O V E R  T I M E  

I n  any long-term study the values of one or more of the exposure variables may 
change over time. The most important such change is in  the age of subjects in the 
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study. Since rates of most disease outcomes are strongly associated with age, we 
wil l usually wish to control for age in our analysis. 

To allow for changes in age, or for any exposure variable whose value changes 
during the study, we simply divide the follow-up time for each person into distinct 
periods, during which the variable does not change. Since age, of course, changes 
constantly we divide the follow-up time into age groups. For example, in the 
Caerphil ly study we might use five-year age groups: 40-44, 45-49, 50-54 and so 
on. Note that age 50-54 means 'from the date of the 50th birthday to the day 
before the 55th birthday' . The underlying assumption is  that rates do not differ 
much within an age group, so that for example it assumes that the rate of 
myocardial infarction wi l l  be similar for a 54-year-old and a 50-year-old .  
Narrower age bands wi l l  be appropriate when rates vary rapidly with age; for  
example in  a study of infant mortality. 

Table 24. 1 0  and Figure 24. l i l lustrate the division of the follow-up period into 
5-year age bands for subject numbers l and 2 in the Caerphilly dataset. Subject 1 
was aged 58 . 52 years when he was recruited, and therefore started in the 55-59 age 
group. He  passed through the 60-64, 65-69 and 70-74 age groups, and was in the 
75-79 age group at  the end of the study (at which time he was aged 75 .36) .  
Subject 2 was also in the 55-59 age group when he was recruited. He  was in  the 
60-64 age group when he experienced a myocard ial infarction on 27 Feb 1 985 ,  at 
which time he was aged 6 1 . 8 1 .  

I t  is important to note that the value of M I  (myocardial infarction, the outcome 
variable) is equal to 0 for every interval unless the subject experienced an MI at the 
end of the in terval ,  in which case it is I .  Thus for subject l , the value of M I  is  0 for 
every in terval, and for subject 2 it is 0 for the first interval and l for the second 
interval .  In general, the value of the outcome variable for a subject who experi
enced the outcome will be zero for every interval except the last . 

Having divided the fol low-up t ime in this way, we may now use Mantel

Haenszel or Poisson regression methods to examine the way in which disease 
rates change with age group, or to examine the effects of other exposures having 

Table 24. 1 0  Follow-up time spl it into 5-year age bands for the first two subjects in the Caerphilly study. 

Date at start of Date at end 

interval of interval Age group 

Age at start Age at end 

of interval of interval 

Years in 

interval 

Subjed 1, born 22 Aug 1923, recruited 1 Mar 1982, exit (at end of follow-up) 31 Dec 1998 

Ml 

1 Mar 1 982 2 1  Aug 1 983 55-59 58.52 60 1 .48 O 

22 Aug 1 983 21 Aug 1 988 60-64 60 65 5 0 

22 Aug 1 988 21 Aug 1 993 65-69 65 70 5 0 

22 Aug 1 993 21 Aug 1 998 70-74 70 75 5 0 

22 Aug 1 998 3 1  Dec 1 998 75-79 75 75.36 0.36 0 

Subjed 2, born 8 May 1923, recruited 30 May 1982, exit (on date of Ml) 27 Feb 1985 
30 May 1 982 7 May 1 983 55-59 59.06 60 0.94 0 

8 May 1 983 27 Feb 1 985 60-64 60 61 .81 1 .81 
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Fig. 24.1 Age of subjects 1 and 2 during the Caerphilly study. The dotted vertical l ines denote 5-year age 

bands. 

control led for the effects of age group. Perhaps surprisingly, we analyse the 
contributions from the different time periods from the same individual in exactly 
the same way as if they were from di fferent individuals. See Clayton and H il ls 
( 1 993 )  for the reasons why this is justified . Also, note that if we analyse this 
expanded data set (with follow-up spl i t  into age groups) but omit age group 
from the analysis we wil l  get exactly the same answer as in the analysis using the 
original intervals. This is because the number of events and the total follow-up 
time are exactly the same in  the original and expanded datasets. 

Table 24. 1 1  shows the total number of events ( d )  and person-years ( T )  in  the 
different age groups in the Caerphi l ly study, together with the rates per 1 000 
person-years and corresponding 95 % confidence intervals. Rates of myocardial 
infarction general ly increased with increasing age. 

Table 24.1 1 Rates of myocardial infarction in different age groups in the Caerphilly study. 

Age group d T Rate per 1 000 person-years 95% Cl 

45-49 1 2  1 627 7.376 4. 1 89 to 1 2 .989 

50-54 42 4 271  9.833 7.267 to 1 3.305 

55-59 73 6 723 1 0.858 8.632 to 1 3.657 

60-64 1 02 7 1 1 5  1 4.336 1 1 .807 to 1 7.406 

65-69 76 4 287 1 7.726 1 4. 1 5 7  to 22.1 95 

70-74 30 1 872 1 6.029 1 1 .207 to 22.926 

75-79 1 3  266 48.958 28.428 to 84.3 1 5  

This same approach may be used t o  examine any effect that may change over 
time. For example: 

• i f  repeat measurements of exposures are made on different occasions after 
basel ine, we may divide the follow-up time into the periods following each 
measurement, with time-updated values of the exposure measured at the begin
n ing of each period. 

• secular changes can be analysed by dividing time into different time periods ( for 
example, 1 970 to 1 974, 1 975 to 1 979, etc. ) .  
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Joint effects may be investigated by dividing the period of follow-up according to 
the values of two variables. Note that the way in which individuals move through 
different categories of age group and time period may be d isplayed in a Lexis 

diagram (see Clayton and H i l ls, 1 993 or Szklo and Nieto, 2000). 
In Section 27 .5 ,  we explain how Poisson regression with follow-up time split 

into intervals is related to Cox regression analysis of survival data, and in  Section 
27.4 we discuss the criteria for choice of the time axis. 
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Standardization 

25 . 1  I ntroduction 

25.2 Direct standardization 

25.3 Indirect standardization 

2 5 . 1  I N T R O D U C T I O N  

25.4 Use of Poisson regression for 

indirect standardization 

Extension to several SMRs 

Death rates and disease incidence rates are usually strongly related to age, and 
often differ for the two sexes. Population mortal i ty and incidence rates therefore 
depend critically on the age-sex composition of the population. For example, a 
relat ively older population would have a higher crude mortality rate than 
a younger population even if, age-for-age, the rates were the same. It is therefore 
misleading to use overall rates when comparing two different populations 
unless they have the same age-sex structure. We saw in Chapter 23 how to use 
Man tel-Haenszel methods and in Chapter 24 how to use Poisson regression to 
compare rates between different groups after contro l l ing for variables such as age 
and sex. 

We now describe the use of standardization and standardized rates to produce 
comparable measures between populations or sub-groups, adjusted for major 
confounders, such as any age-sex differences in the composition of the different 
populations or subgroups. Mantel-Haenszel or regression methods should be used 
to make formal comparisons between them. 

There are two methods of standardization: direct and indirect, as summarized in 
Table 25 . 1 .  Both use a standard population. 

Table 25 . 1  Comparison of direct and indirect methods of standardization. 

Direct standardization 

Method Study rates applied to standard 

population 

Data required 

Study population(s) Age-sex specific rates 

Standard population Age-sex composition 

Result Age-sex adjusted rate 

Indirect standardization 

Standard rates applied to study 

population 

Age-sex composition + total 

deaths (or cases) 

Age-sex specific rates (+ overall 

rate) 

Standardized mortal ity (morbidity) 

ratio (+ age-sex adjusted rate) 
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• I n  direct standardization, the age-sex specific rates from each of the populations 
under study are applied to a standard population. The result is a set of stand

ardized rates. 

• In indirect standardization, the age-sex specific rates from a standard population 
are applied to each of the study populations. The result is a set of standardized 

mortality (or morbidity) ratios (SMRs). 

The choice of method is usually governed by the availability of data and by their 
(relative) accuracy. Thus, direct standardization gives more accurate results when 
there are small numbers of events in any of the age-sex groups of the study 
populations. The indirect method will be preferable if it is  d ifficult to obtain 
national data on age-sex specific rates. 

Both methods can be extended to adjust for other factors besides age and sex, 
such as different ethnic composi tions of the study groups. The d irect method can 
also be used to calculate standardized means, such as age-sex adjusted mean blood 
pressure levels for different occupational groups. 

2 5 . 2  D I R E C T  S T A N D A R D I Z ATI O N  

Example 25. 1 
Table 25.2 shows the number of cases of prostate cancer and number of person
years among men aged 2'. 65 living in France between 1 979 and 1 996. The data are 
shown separately for six 3-year time periods. Corresponding rates of prostate 
cancer per 1 000 person-years at risk (pyar) are shown in Table 25 .3  

Table 25 .3  shows that the crude rates ( those derived from the total number 
of cases and person-years, ignoring age group) increased to a peak of 
2.64/ l OOO pyar in  1 988-90 and then declined . However Table 25 .2  shows that 
the age-distribution of the population was also changing during this t ime: the 
number of person-years in the oldest (2'. 85 year) age group more than doubled 
between 1 979-8 1 and 1 994-96, while increases in other age groups were more 
modest . The oldest age group also experienced the highest rate of prostate cancer, 
in all t ime periods. 

Table 25.2 Cases of prostate cancer /1 000 person-years among men aged ;::: 65 l iv ing in  France between 1 979 

and 1 996. 

Time period 

Age group 1 979-81 1 982-84 1 985-87 1 988-90 1 991-93 1 994-96 

65-69 2021 /2970 1 555/2 1 97 1 930/2686 2651 /3589 2551 /3666 2442/3764 

70-74 3924/2640 3946/2674 3634/2272 2842/1860 3863/2703 41 58/31 77 

75-79 5297/1 886 5638/1 946 601 8/1 980 621 1 /2028 4640/1 598 4253/1 659 

80-84 461 1 /985 5400/1 1 34 61 99/1 1 89 6844/1 294 6926/1 393 641 2/1 347 

:::: 85 3273/478 381 2/539 4946/61 6 6581 /764 7680/878 881 9/1 003 

Total 1 91 26/8959 20351 /8490 22727/8743 25129/9535 25660/1 0238 26084/1 0950 
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Table 25.3 Rates of prostate cancer (per 1 000 person-years) in men aged ::O: 65 living in France between 1 979 

and 1 996. 

Time period 

Age group 1 979-81 1 982-84 1 985-87 1 988-90 1 991-93 1 994-96 

65-69 0.68 0.71 0 .72 0.74 0.70 0.65 
70-74 1 .49 1 .48 1 .60 1 .53 1 .43 1 .3 1  

75-79 2.81 2 .90 3.04 3.06 2 .90 2 .56 

80-84 4.68 4.76 5 .21 5 .29 4.97 4.76 

::0: 85 6 .85 7.07 8.03 8.61 8.75 8.79 

Crude rate 2 . 1 3  2.40 2.60 2.64 2 .5 1  2 .38 

Standardized rate 2 .35 2.40 2.60 2.64 2.64 2.39 

This means that the overal l  rates in  each time period need to be adjusted for 
the age distribution of the corresponding population before they can meaningful ly 
be compared. We wil l  do this using the method of direct standardization. 
1 The fi rst step i n  direct standardization is to identify a standard population. This 

i s  usually one of the fol lowing: 
• one of the study populations 
• the total of the study populations 
• the census population from the local area or country 

The choice is to some extent arbitrary. Different choices lead to different 
summary rates but this is unl ikely to affect the interpretation of the results 
unless the patterns of change are different in the different age group strata (see 
point 5 ) .  Here we will use the number of person-years for the period 1 985-87. 

2 Second, for each of' the time periods of interest, we calculate what would be the 
overal l  rate of prostate cancer in  our standard population if the age-specific 
rates equalled those of the time period of interest. This is called the age 
standardized survival rate for that time period . 

Age standardized rate 
Overall rate in  standard population " ( , ) LJ W; X /,; 
if the age-specific rates were the same = ----
as those of the population of interest �w; 

In the above definit ion, w; i s  the person-years at risk in  age group i in the 
standard population, ),; = d;/pyar; i s  the rate in age group i in the time period of 
interest and the summation is  over all age groups. Note that this is simply a 
weighted average (see Section 1 8 .3 )  of the rates in the different age groups in the 
t ime period of i nterest, weighted by the person-years at risk in  each age group in 
the standard population. 
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Table 25.4 Calculating the age standardized rate of prostate cancer for 1 979-8 1 ,  using direct 

standardization with the person-years during 1 985-87 as the standard population. 

Standard population: Estimated number of 

thousands of person- Study population: cases in  standard 

Age group years in 1 985-87, w; Rates in 1 979-81 , "A; population, w; x A; 

65-69 2686 0.68 1 827.7 

70-74 2272 1 .49 3377.0 

75-79 1 980 2.81 5561 .0 

80-84 1 1 89 4.68 5566.0 

?'. 85 61 6 6.85 421 7 .9 

All ages L:;w; = 8743 L:;(w; x "!.;) = 20549.6 

Age adjusted rate = 2.35 

For example, Table 25.4 shows the details of the calculations for the age
standardized rate for 1 979-8 1 ,  using the person-years in 1 985-87 as the stand
ard population. In the 65 to 69-year age group, applying the rate of 0.68 per 
1 000 person-years to the 2686 person-years in that age group in  the standard 
population gives an estimated number of cases in this age group of 
0.68 x 2686 = 1 827 .7 .  Repeating the same procedure for each age group, and 
then summing the numbers obtained, gives an overall estimate of 20549. 6  cases 
out of the total of 8743 thousand person-years in the standard population :  an 
age-standardized rate for the study population of 2 .35 per 1 000 person-years. 

3 The results for all the time periods are shown in the bottom row of Table 25 .3 .  
The crude and standardized rates of  prostate cancer in  the different t ime periods 
are plotted in Figure 25 . 1 (a). This shows that the crude rate was lower than the 
directly standardized rate in  the 1 979-8 1 period, but similar thereafter. This is 
because, as can be seen in Table 25.2, in  the 1 979-8 1 period there were propor
tionally fewer person-years in the oldest age groups, in which prostate cancer 
death rates were highest .  

4 The standard error for the standardized rate is calculated as: 

Standard error of 
standardized rate 

Standard error of 
standardized proportion 

_
1 I ('""' wfp;( l - p;)) 

L:;w; V L n; 

where the left hand formula is used for standardized rates and the right hand 
formula for standardized proportions. In these formulae the weights w; are the 
person-years or number of individuals in  the standard population . Using this 
formula, the standard error of the standardized rate in 1 979-8 1 is  0 .0 1 7  per 1 000 
person-years, so that the 95 % confidence interval for the standardized rate in 
1 979-8 1 is: 
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95 % CI = 2 .35 - l .96 x 0 .0 1 7  to 2 .35 + l .96 x 0.0 1 7  

= 2 .32 to 2 .38  per 1 000 person-years 

5 Finally, it is  important to inspect the patterns of rates in the individual strata 
before standardizing, because when we standardize we assume that the patterns 
of change in the rates are similar in each stratum. If this is not the case then the 
choice of standard population will influence the observed pattern of change in 
the standardized rates. For example, in Figure 25. l (b )  i t  can be seen that the 
rate in  the ::::0: 85 year age group increased more sharply than the rates in  the 
other age gro ups. This means that the greater the proportion of ind ividuals in 
the ::::0: 85  year age group in the standard population, the sharper will be the 
increase in the standardized rate over time. 

2.7 
l.'.'. t1l � 2.6 
c 0 l.'.'. 2.5 
Q) a. 
0 2.4 
0 0 :: 2.3 
<ll a. 
Q) 2.2 iii a: 

- crude rate (a) 
--•-- D i rectly standardized rate 

2.1 ...... ---..----,.----.----r----"""T" 

l.'.'. Ill Q) >-
C: 0 VJ Qj a. 

0 0 0 
Qj a. 
.El Ill a: 

1 979-81 1 982-84 1 985-87 1988-90 1991-93 1994-96 
Time period 

1 0  (b) 

�-------- ;;,85 

------------------ 00-84 

------------------ 75-79 
------------------ 70-74 
------------------- 65-69 0 1 979-81 1982-84 1 985-87 1 988-90 1 991-93 1994-96 
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Fig. 25 . 1  (a) Crude and directly standardized rates of prostate cancer among men aged 2: 65 years living in 

France between 1 97 9  and 1 986, with the population in 1 985-87 chosen as the standard population. (b) 

Time trends in age-specific rates of prostate cancer, among men aged 2: 65 years l iving in  France between 

1 979 and 1 986. 
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2 5 . 3  I N D I R E C T  S TA N D A R D I ZAT I O N  

Example 25.2 
Table 25 .5  shows mortal i ty rates from a large one-year study in an area endemic 
for onchocerciasis. One feature of interest was to assess whether bl indness, the 
severest consequence of onchocerciasis, leads to increased death rates. From the 
results presented in  Table 25.5 it can be seen that: 
• not only does mortality increase with age and differ sl ightly between males and 

females, but 
• the prevalence of blindness also increases with age and is h igher for males than 

for females. 
The blind sub-population is therefore on average older, with a higher proportion 
of males, than the non-blind sub-population. This means that i t  would have a 
higher crude mortality rate than the non-bl ind sub-population, even if the indi
vidual age-sex specific rates were the same. An overall comparison between the 
blind and non-blind will be obtained using the method of indirect standardization. 
I As for direct standardization, the first step is to ident ify a standard population. 

The usual choices are as before, with the restrictions that age-sex specific 
mortality rates are needed for the standard population and that the population 
chosen for this should therefore be large enough to have reliable estimates of 
these rates. In this example the rates among the non-blind wi l l  be used. 

2 These standard rates are then applied to the population of i nterest to calculate 
the number of deaths that would have been expected in  this population if the 
mortality experience were the same as that in the standard population .  

For example, in stratum 1 (males aged 30-39 years) one would expect a 
proportion of 1 9/2400 of the 1 20 blind to die, if their risk of dying was the 
same as that of the non-blind males of similar age. This gives an expected 0.95 
deaths for this age group. In  total, 22.55 deaths would have been expected 
among the blind compared to a total observed number of 69. 

3 The ratio of the observed to the expected number of deaths is  called the standard

ized mortality ratio (SMR). It equals 3 . 1 (69 /22 .55)  in this case. Overal l ,  blind 
persons were 3 . 1 times more l ikely to die during the year than non-blind persons. 

Standardized 
mortal ity 
ratio (SMR)  

observed number of deaths 2',d; 

expected number of deaths i f  the 2',E; 
age-sex specific rates were the same 
as those of the standard population 

The SMR measures how much more (or less) likely a person is to die in the 
study population compared to someone of the same age and sex in the standard 
population. A value of l means that they are equally likely to die, a value larger 



Table 25.5 Use of indirect standardization to compare mortal ity rates between the blind and non-blind, collected as part of a one-year study in an area endemic for onchocerciasis. 

The mortality rates among the non-blind have been used as the standard rates. 

Expected number of 

deaths among blind 

Non-blind persons Bl ind persons if rates were the 

same as those of 

Number of Number of Deaths/1 000/ Number of person-years Number of the non-blind 

Age (yrs) Stratum (1) person-years deaths yr (A.;) % blind (T;) deaths (d;) Deaths/1 000/yr (f; = A.; x T;) 

Males 
30-39 1 2400 1 9  7.9 4.8 1 20 3 25.0 0 .95 

40-49 2 1 590 2 1  1 3 .2 9 .7 1 7 1 7 40.9 2.26 

50-59 3 1 1 20 20 1 7.9 1 7 .9 244 1 3  53.3 4.36 

60+ 4 61 0 20 32 .8 28.0 237 24 1 0 1 .3 7.77 

Females 
30-39 5 3 1 00 23 7 .4 2 .6  84 2 23.8 0.62 

40-49 6 1 61 0  22 1 3 .7 4.1 69 3 43.5 0.94 

50-59 7 930 1 6  1 7 .2 1 5.3 1 68 8 47.6 2.89 

60+ 8 270 8 29.6 25.6 93 9 96.8 2 .76 

Total 1 1 630 1 49 1 2 .8 9.3 69 58.2 22.55 

SMR 1 .0 3 . 1  (69122.5) 

Age-sex adjusted mortal ity rate 1 2 .8 39.7 (3.1 x 1 2 .8) 
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than 1 that they are more l ikely to die, and a value smaller than l that they 
are less l ikely to do so. The SMR is sometimes multipl ied by 1 00 and expressed 
as a percentage. Since the non-blind population was used as the standard, 
i ts expected and observed numbers of deaths are equal, result ing in  an SMR 
of I .  

4 The 95 % confidence interval for the SMR is derived using an error factor (EF) 
i n  the same way as that for a rate ratio (see Section 23 .2) :  

95 % C I  =SMR/EF to SMR x EF, where 

EF = exp( l .96/ Jd; )  

I n  this example, EF  = exp( l .96/ v69) = 1 .266, and the 95  % confidence in terval 
for the SMR is :  

SMR 
95 % C I = 

EF 
to SMR x EF = 3 .06/ 1 .266 to  3 .06 x 1 .266 = 2 .42 to 3 . 87 

5 Age-sex adjusted mortality rates may be obtained by mult iplying the SMRs by 
the crude mortality rate of the standard population, when this is known. This 
gives age-sex adjusted mortality rates of 1 2 .8 and 39 .7 / 1 000/year for the non
bl ind and blind populations respectively. 

Age-sex adj usted 
mortality rate SMR x crude mortality rate of 

standard population 

2 5 . 4  U S E  OF P O I S S O N  R E G R E S S I O N  F O R  I N D I R E C T  
S T A N D A R D I Z A T I O N  

We may use Poisson regression to derive the SMR, by fitting a model with: 
• each row of data corresponding to the strata in the study population; 
• the number of events in  the study population as the outcome. In Example 25 .2 

th is  would be the number of deaths in  the blind population; 
• no exposure variables (a 'constant-only' model); 
• specifying the expected number of events in each stratum (each row of the data), 

instead of the number of person-years, as the offset in the model. In Example 
25.2 ,  these are the expected number of deaths given in the right hand column of 
Table 25 .5 .  

Table 25 .6 shows the output from fitt ing such a model to the data in  Example 
25 .2 .  The output is  on the log scale, so the SMR is calculated by anti logging the 
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Table 25.6 Poisson regression output (log scale), using the expected number of deaths in the blind population as 

the offset. 

Coefficient s.e. z P > lzl 95% Cl 

Constant 1 . 1 1 85 0 . 1 204 9.29 0.000 0.8825 to 1 .3544 

coefficient for the constant term. It equals ex p(l . 1 1 85 )  = 3. I ,  the same as the value 
calculated above. 

SMR = exp(regression coefficient for constant term) 

The 95 % CI for the SMR is derived by anti logging the confidence interval for 
the constant term. I t  is exp(0.8825) to exp( l . 3544) = 2 .42 to 3 . 87 .  I t  should be 
noted that indirect standardization assumes that the age-sex specific rates in  
the standard population are known without error. Clearly th i s  is  not  true in the 
example we have used : the consequence of this is that confidence intervals  for the 
SMR derived in  this way wil l be somewhat too narrow. For comparison, a 
standard Poisson regression analysis of the association between blindness and 
death rates for the data in  Table 25.5 gives a rate ratio of 3 .05, and a 95 % CI of 
2.24 to 4. 1 5 . 

Extension to several SMRs 

It is fairly straightforward to extend this procedure to estimate, for example, the 
SMRs for each area in a geographical region by calculating the observed and 
expected number of deaths in each age-sex stratum in each area, and fitting a 
Poisson regression model including indicator variables for each area, and omitting 
the constant term. The SMRs would then be the antilogs of the coefficients for the 
different area ind icator variables. 
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proportional hazards assumption 

2 6 . 1  I N T R O D U C T I O N  

The methods described so far i n  this part o f  the book assume that rates are 
constant over the period of study, or within time periods such as age groups 
defined by splitting follow-up time as described in Section 24.6. However, in 
longitudinal studies in  which there is  a clear event from which subjects are 
fol lowed, such as diagnosis of a condition or init iation of treatment, i t  may not 
be reasonable to assume that rates are constant, even over short periods of time. 
For example: 
• the risk of death is very high immediately after heart surgery, falls as the patient 

recovers, then rises again over time; 
• the recurrence rate of tumours, following diagnosis and treatment of breast 

cancer, varies considerably with time. 
Methods for survival analysis allow analysis of such rates without making the 
assumption that they are constant .  They focus on: 
1 the hazard h(t) : the instantaneous rate at time 1 .  They do not assume that the 

hazard is constant within time periods; 
2 the survivor function S(t) , i l lustrated by the survival curve. This is  the probabil

ity that an individual wil l survive ( i .e .  has not experienced the event of interest) 
up to and includ ing time t .  

We start by describing two ways of estimating the survival curve; l ife tables and 
the Kaplan-Meier method. We will then explain the proportional hazards as
sumption, and discuss how to compare the survival of two groups using Mantel
Cox methods. In  the next chapter we will discuss regression analysis of survival 
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data. We will see that these methods are closely related to, and often give similar 
results to, the Mantel-Haenszel and Poisson regression methods for the analysis 
of rates. 

In Chapter 22 we stated that survival times for subjects who are known to 
have survived up to a certain point in time, but whose survival status past that 
point is not known, are said to be censored. Throughout this and the next chapter 
we will assume that the probability of being censored (either through loss to 
fol low-up or because of death from causes other than the one being studied) is 
unrelated to the probabil i ty that the event of interest occurs. If this assumption is 
violated then we say that there is informative censoring, and special methods must 
be used. 

2 6 . 2  L I F E  T A B L E S  

Life tables are used t o  d isplay the survival pattern o f  a community when we do not 
know the exact survival t ime of each individual, but we do know the number of 
individuals who survive at a succession of t ime points. They may take one of two 
different forms. The first, a cohort l!fe table, shows the actual survival of a group 
of individuals through t ime. The starting point from which the survival time is 
measured may be birth, or i t  may be some other event. For example, a cohort l i fe 
table may be used to show the mortality experience of an occupational group 
according to length of employment in  the occupation, or the survival pattern of 
patients fol lowing a treatment, such as radiotherapy for smal l-cell carcinoma of 
bronchus (Table 26. 1 ) . The second type of l ife table, a current life table, shows the 
expected survivorship through time of a hypothetical population to which current 
age-specific death rates have been applied. H istorica l ly, this was more often used 
for actuarial purposes and was less common in medical research.  In recent t imes, 
this approach has been used to model the burden of disease due to different causes 
and conditions (M urray & Lopez, 1 996) .  

Example 26. 1 
Table 26. 1 shows the survival of patients with smal l-cell carcinoma of bronchus, 
month by month fol lowing treatment with radiotherapy. This table is based on 
data collected from a total of 240 patients over a 5 year period. The data them
selves are summarized in  columns 1 -4 of the l i fe table; the construction of a cohort 

life table is shown in columns 5-8 . 
Column 1 shows the number of months since treatment with radiotherapy 

began. Columns 2 and 3 contain the number of patients al ive at the beginning 
of each month and the number who died during the month. For example, 1 2  of the 
240 patients d ied during the fi rst month of treatment, leaving 228 sti l l  al ive at the 
start of the second month. The number of patients who were censored during each 
month (known to have survived up to month i but lost to follow-up after that 
time) is shown in  column 4. The total number of persons at risk of dying during 
the month, adjusting for  these losses, is shown in column 5 .  This equals the 



Table 26.1  Life table showing the survival pattern of 240 patients with small-cell carcinoma of bronchus treated with radiotherapy. 

( 1 )  (2) (3) (4) (5) (6) (7) (8) 
Interval (months) Number alive at Number censored Cumulative chance of 

since start of beginning of Deaths during (lost to follow-up) Number of persons Risk of dying during Chance of surviving survival from start of 

treatment interval interval during interval at risk interval interval treatment 

a; d; C; n; = a; - c;/2 r; = d;/n; S; = 1 - f; S(i) = S(i - /) x S; 

240 1 2  0 240.0 0.0500 0.9500 0.9500 
2 228 9 0 228.0 0.0395 0.9605 0.91 25 
3 2 19  1 7  1 21 8.5 0.0778 0.9222 0.841 5 
4 201 36 4 1 99.0 0 . 1 809 0.81 91  0.6893 
5 1 61 6 2 1 60.0 0.0375 0.9625 0.6634 
6 1 53 1 8  7 1 49.5 0 . 1 204 0.8796 0.5835 

1 28 1 3  5 1 25.5 0 . 1 036 0.8964 0.5231 
8 1 1 0  1 1  3 1 08.5 0 . 1 0 1 4  0.8986 0.4700 
9 96 1 4  3 94.5 0 . 1 481 0.85 1 9  0.4004 

1 0  79 1 3  0 79.0 0 . 1 646 0.8354 0.3345 
1 1  66 1 5  4 64.0 0.2344 0.7656 0.2561 
1 2  47 6 1 46.5 0 . 1 290 0.87 1 0  0.2231 
1 3  40 6 0 40.0 0 . 1 500 0.8500 0 . 1 896 
1 4  34 4 2 33.0 0. 1 2 1 2  0.8788 0 . 1 666 
1 5  28 5 0 28.0 0 . 1 786 0.82 1 4  0 . 1 369 
1 6  23 7 1 22 .5 0.31 1 1  0.6889 0.0943 
1 7  1 5  1 2  0 1 5.0 0.8000 0.2000 0.01 89 
1 8  3 3 0 3.0 1 .0000 0.0000 0.0000 
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number a live at the beginning of the month minus half the number lost to fol low
up, assuming that on average these losses occur half-way through the month. 

Column 6 shows the risk of dying during a month, calculated as the number of 
deaths during the month divided by the number of persons at risk . Column 7 
contains the complementary chance of surviving the month. 

Column 8 shows the cumulative chance of surviving. This is calculated by 
applying the rules of conditional probability (see Chapter 1 4) .  I t  equals the chance 
of surviving up to the end of the previous month, multipl ied by the chance of 
surviving the month. For example, the chance of surviving the first month was 
0.9500. During the second month the chance of surviving was 0.9605. The overall 
chance of surviving two months from the start of treatment was therefore 
0.9500 x 0.9605 = 0.9 1 25. In this study all the patients had died by the end of 
1 8  months. 

More general ly, the cumulative chance of surviving to the end of month i is 
given by: 

S(i) = chance of surviving to month (i - 1 )  x chance of surviving month i 
= S(i - 1 )  x s; or s1 x s2 x . . .  x s; 

These are the probabilities S(i) of the survivor function. The survival curve 1 s 
i l lustrated in Figure 26. I .  
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Fig. 26.1  Survival curve for patients with small-cell carcinoma of the bronchus treated with radiotherapy, 

drawn from life table calculations presented in Table 26. 1 .  
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Confidence interval for the survival curve 

The 95 % confidence interval for each S(i) is derived using an error factor ( see 
Kalbfleisch & Prentice, 1 980, pp. 1 4, 1 5  for details) as follows: 

95 % CI = S(t)( t /EFJ to S(t)EF, where 

EF _ [ l 96 
J[L,d/(n(n - cl))] ] 

- exp . x ? 
[L, log((n - cl)/n)]-

In this formula, the summations are over all the values of cl and n, up to and 
including t ime interval i. Figure 26. 1 includes the 95 % confidence in tervals calcu
lated in  this way, using the data in  columns 3 and 5 of Table 26. 1 .  Because 
derivation of such confidence intervals involves a substantial amount of calcula
tion, i t  is  usually done using a statistical computer package. 

Life expectancy 

Also of interest is  the average length of survival, or life expectancy, following the 
start of treatment. This may be crudely estimated from the survival curve as the 
time corresponding to a cumulative probability of survival of 0 .5 ,  or it may be 
calculated using columns 1 and 8 of the l ife table. For each interval, the length of 
the interval is mul tipl ied by the cumulative chance of surviving. The total of these 
values plus a half gives the l ife expectancy . (The addition of a half is  to  allow for 
the effect of grouping the l ife table in whole months and is similar to the continuity 
corrections we have encountered in earlier chapters . )  

L
.
fi 0 5 L ( length of cumulative chance ) 

i e expectancy = . + . x . 
mterval of survival 

In Table 26. l al l the intervals are of l month and so the l ife expectancy is simply 
the sum of the values in column 8 plus a half, which equals 7 .95 months. 

2 6 . 3  K A P LA N - M E I E R  E S T I M AT E  OF T H E  S U R V I V A L  C U R V E  

I n  many studies we know the exact follow u p  time (for example, t o  within l day) 
for each ind ividual in the study, and may therefore wish to estimate the survivor 
function S( t) using this information rather than by dividing the survival t ime into 
discrete periods, as is  done in the l ife table method. This avoids the assumption 
that ind ividuals lost to follow-up are censored half way through the interval. The 
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difference between the approaches is l ikely to be minimal if the periods in the l i fe 
table are short, such as 1 month, but for longer periods ( such as I year) infor
mation is l ikely to be lost by grouping. 

The estimate using exact failure and censoring times is known as the Kaplan

Meier estimate, and is based on a similar argument to that used in deriving l ife 
tables. To derive the Kaplan-Meier estimate, we consider the risk sets of individ
uals sti l l being studied at  each time, t, at which an event occurs. If there are 111 
individuals in the risk set at t ime t, and d1 events occur at that precise time then the 
estimated risk, ri , of an event at t ime t is d1/n1, and so the estimated survival 

probability at time t is : 

111 - di 
S1 = 1 - rt = --

n1 

At all t imes at which no event occurs, the estimated survival probabil i ty is I .  
To estimate the survivor function, we use a similar conditional probability 

argument  to that used in deriving l ife tables. We number the times at which 
d isease events occur as t 1 ,  t1, t3 and so on. Since the estimated survival probabil
i ty until just before t1 i s  I :  

The survival probability remains unchanged until the next disease event, at time t2 . 
The survivor function at this t ime t2 is : 

In general ,  the survival probabil i ty up to and including event ./ is :  

This is  known as the product-limit formula. Note that loss to follow-up does not 
affect the estimate of survival probability: the next survival probability is calcu
lated on the basis of the new denominator, reduced by the number of subjects lost 
to fol low-up since the last event .  

Example 26.2 
The examples for the rest of this chapter are based on data from a randomized 
trial (see Chapter 34) of Azathioprine for primary biliary ci rrhosis, a chronic and 
eventually fatal l iver disease (Christensen et al., 1 985 ) .  The trial was designed to 
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compare an active treatment, Azathioprine, against placebo. Between October 
1 97 1  and December 1 977, 248 patients were entered in to the trial and fol lowed for 
up to 1 2  years. A total of 1 84 patients had the values of all prognostic variables 
measured at baseline. Of these, 3 l had central cholestasis (a marker of disease 
severity) at entry. Among these 3 1  patients there were 24 deaths, and 7 losses to 
follow-up, as shown in Table 26.2 .  

The first death was at 19 days, so the risk of death at  1 9  days was 
r 1 9  = 1 /3 1  = 0.0323 . The survival probabi l i ty at 1 9  days is therefore s 1 9  = 1 
- 0.0323 = 0.9677, and the survivor function S( l 9 )  = s 1 9  = 0 .9677. The next 
death was at  48 days; at this point  30 patients were stil l at risk . The risk of death 
at 48 days was r4s = 1 /30 = 0.0333. The survival probabil ity at 48 days is  there
fore S4g = 1 - 0.0333 = 0.9667, and the survivor function S(48) = s19  x s4s 
= 0.9355 .  Similarly, the estimate of the survivor function at 96 days is  
s19  x s4s x s96 = 0 .9677 x 0.9667 x 0.9655 = 0.9032, and so on.  

Displaying the Kaplan-Meier estimate of S(t) 
The conventional d isplay of the Kaplan-Meier estimate of the survival curve for 
the 3 l patients with central cholestasis is shown in Figure 26.2.  The survival curve 
is  shown as a step function; the curve is horizontal at all t imes at which there is no 
outcome event, with a vertical drop corresponding to the change in the survivor 
function at each t ime when an event occurs. At the right-hand end of the curve, 
when there are very few patients stil l at risk, the t imes between events and the 
drops in  the survivor function become large, because the estimated risk (1 ·1 = d1/n1 ) 
is large at each t ime t at which an event occurs, as n1 is small . The survivor 
function should be in terpreted cautiously when few patients remain at risk. 

Confidence interval for the survival curve 

Confidence intervals for S(t) are derived in the same way as described earl ier for 
l ife ta bl es. 

2 6 . 4  C O M P A R I S O N  O F  H A Z A R D S :  T H E  P R O P O R T I O N A L  H A ZA R D S  
A S S U M PT I O N  

The main focus of interest i n  survival analysis i s  i n  comparing the survival patterns 
of different groups. For example, Figure 26.3 shows the Kaplan-Meier estimates 
of the survivor functions for the two groups of patients with and without central 
cholestasis at baseline. It seems clear that survival t imes for patients without 
central cholestasis at baseline were much longer, but how should we quantify 
the difference in survival? The differences between the survival curves are obvi
ously not constant. For example both curves start a t  I ,  but never come together 



Table 26.2 Derivation of the Kaplan-Meier estimate of the survivor function S(t), for 31 patients with primary bil iary cirrhosis complicated by central cholestasis. Analyses of this study are by 

kind permission of Dr E. Christensen. 

Number at risk Number of deaths Number lost to follow-

Time (days) at time of event(s) at time t up at time t Risk of death Probability of survival Survivor function 

t n, d, c, r1 = d,jn, Sr = 1 - r1 S(t) = 5(tw.,;ous ) X Sr 

1 9  3 1  1 0 0.0323 0.9677 0.9677 
48 30 1 0 0.0333 0.9667 0.9355 
96 29 1 0 0.0345 0.9655 0.9032 

1 50 28 1 0 0.0357 0.9643 0.87 10  
1 77 27 1 0 0.0370 0.9630 0.8387 
1 93 26 1 0 0.0385 0.961 5 0.8065 
201 25 1 0 0.0400 0.9600 0.7742 
245 24 1 0 0.04 1 7  0.9583 0.741 9 
251 23 1 0 0.0435 0.9565 0.7097 
256 22 1 0 0.0455 0.9545 0.6774 
302 21 0 1 0 1 0.6774 
341 20 1 0 0.0500 0.9500 0.6435 
395 1 9  1 0 0.0526 0.9474 0.6097 
421 1 8  1 0 0.0556 0.9444 0.5758 
464 1 7  1 0 0.0588 0.9412  0.54 19  
578 1 6  1 0 0.0625 0.9375 0.5081 
582 1 5  0 1 0 1 0.5081 
586 1 4  0 1 0 1 0.5081 
688 1 3  1 0 0.0769 0.9231 0.4690 
828 1 2  0 1 0 1 0.4690 
947 1 1  1 0 0.0909 0.9091 0.4263 

1 1 59 1 0  0 1 0 1 0.4263 
1 2 1 9  9 1 0 0.1 1 1 1  0.8889 0.3790 
1 268 8 1 0 0.1 250 0.8750 0.33 1 6  
1 292 7 0 1 0 1 0.331 6 
1 693 6 1 0 0.1 667 0.8333 0.2763 
1 881 5 1 0 0.2000 0.8000 0.22 1 1  
1 940 4 1 0 0.2500 0. 7500 0.1 658 
1 975 3 1 0 0.3333 0.6667 0.1 1 05 
2338 2 0 1 0 1 0.1 1 05 
2343 1 1 0 1 0 0 
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Fig. 26.2 The Kaplan-Meier estimate of the survivor function, S(t), together with upper and lower 

confidence l im its, for 31  patients with primary bi l iary cirrhosis and central cholestasis. 
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Fig. 26.3 Kaplan-Meier estimates of the survivor function, S(t), for primary bil iary cirrhosis patients with 

and without and central cholestasis at baseline. 

again .  With two groups fo llowed unti l everyone has d ied, both survival curves wil l 
also finish at  O; yet one group may have survived on average much longer than the 
other. 
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We solve the problem of allowing for differences in survival t ime by comparing 
the hazards in the two groups over the duration of fol low-up. As noted at  the 
beginning of this chapter, in  survival analysis we avoid the assumption that the 
hazards of the event of interest are constant over the study period . I nstead, we 
assume that the ratio of the hazards in the two groups remains constant over time, 
even if the underlying hazards change. In  other words, we assume that at al l t imes 1 :  

h 1 ( t )  

ho( t) 
= constant 

where h 1 ( t) i s  the hazard in  the exposed group at time I and ho( t )  is the hazard in 
the unexposed group at t ime t .  This important assumption is known as the 
proportional hazards assumption. 

Examining the proportional hazards assumption 

We now see how this assumption may be examined graphically .  It is difficult to 
estimate the hazard directly from data, since this would give a series of 'spikes' 
when an event occurs, interspersed with zeros when there is no disease event. 
I nstead we use the cumulative hazard function, H(t) . This is the total hazard 
experienced up to t ime 1 ,  and is estimated by the sum of the risks at each time i 
at which an event occurs. 

H(t) = I; cJ:i_ ,  summed over all t imes up to and including t 
n; 

This is known as the Nelson-Aalen estimate of the cumulative hazard function. I t  
fol lows from the  definit ion of the cumulative hazard that the hazard function is  
the slope in a graph of cumulative hazard against t ime, so we can examine the way 
in which the hazard varies with time by examining how the slope of the cumulative 
hazard varies with time. 

If the ratio of the hazards in the exposed and unexposed groups is constant over 
time, it follows that the ratio of the cumulative hazard functions must also equal 
this constant :  

H1 ( t) h 1 ( t )  
rr 

( ) 
= -1 

( ) 
= constant 

no t 10 t 

And that, applying the rules of logarithms: 
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log(H1 ( t ) )  - log(Ho( t) )  = log( constant )  

Therefore, i f  the proportional hazards assumption i s  correct then graphs of the log 
of the cumulative hazard function in  the exposed and unexposed groups wil l  be 
paral lel . 

Figure 26.4 shows the log cumulative hazard against t ime since start of treat
ment for primary bil iary cirrhosis patients with and without central cholestasis at 
baseline. It suggests that there is no major violation of the proportional hazards 
assumption, since the l ines appear to be reasonably parallel . In this example time 
has been plotted on a log scale to stretch out the early part of the t ime scale, 
compared to the later, because more events occur at  the beginning of the study 
than near the end. Note, however, that this does not affect the rela tive posit ioning 
of the l ines; they should be parallel whether t ime is plotted on a log scale or on the 
original scale. 

I t  can be shown mathematically that that the cumulative hazard is related to the 
survival function by the fol lowing formulae: 

H(t) = - log(S(t ) ) ,  or equivalent ly 

S(t) = e-H(t) 

Because of this, graphs of log( - log(S( t) ) )  are also used to examine the propor
t ional hazards assumption. 
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Fig. 26.4 Cumulative hazard ( log scale) against t ime ( log scale) for pr imary bi l iary cirrhosis patients with 

and without central cholestasis at baseline, in order to check the proportional hazards assumption. 
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Links between hazards, survival and risks when rates are constant 

In Section 22.3 we described the relationship between risks and rates, and noted 
that when the event rate, }, , is constant over time then the proportion of the 
population event-free decreases exponentially over time. This proportion is 
exactly the same as the survivor function, S(t) . In the box below we extend the 
set of relationships to indude the hazard, and cumulative hazard . Note that the 
hazard is constant over time, and that the cumulative hazard increases l inearly 
over t ime.  This is in contrast to the risk which does not increase at a steady pace; 
its rate of increase decreases with time. 

When the event rate, A., is constant over time: 

h ( t) = }, 

H(t) = A.t  

S(t)  = e-)t 

Risk up to time t = 1 - e-Jr 

Average survival time = 1 /A. 

2 6 . 5  C O M PA R I S O N  O F  H A Z A R D S  U S I N G  M A N T E L- C O X  M E T H O D S :  
T H E  L O G  R A N K  T E S T  

Mantel-Cox estimate of the hazard ratio 

The Mantel-Cox method is a special application of the Mantel-Haenszel proced
ure, in which we construct a separate 2 x 2 table for each time at which an event 
occurs. It combines the contributions from each table, assuming that the hazard 
ratio is constant over the period of follow-up. We will use the same notation as 
that given in Table 1 8 . 3 .  Usual ly, there is only one event at a particular time, so in 
each table either dl i is  0 and d01 is  I or vice-versa, but the procedure also works if 
there are ties (more than one event at a particular time). The Mantel-Cox estimate 

of the hazard ratio is given by: 

H RMc = Q/ R, where 

Q = 
r, d1 ;  x ho; 

and R = 
y:, do; x h 1 1 

n; n; 
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Standard error and confidence interval of the Mantel-Cox HR 

The standard error of log HR Mc is: 

s .e .Mc = J( V/(Q x R)) ,  where 

_ � _ � d; x no; x n 1; 
V - Li V; - Li 

2 n; 

V is the sum across the strata of the variances V; for the number of exposed 
individuals experiencing the outcome event. 

This may be used to derive a 95 % confidence interval for H RMc in  the usual 
way: 

95 % CI = HRMc/EF to H RMc x EF, where 

EF = exp( l .96 x s .e .Mc) 

Mantel-Cox x2 (or log rank) test 

Finally, we test the null hypothesis that HRMc = 1 by calculating the Mantel-Cox 

x2 statistic, which is based on comparisons in each stratum of the number of 
exposed individuals observed to have experienced the event (d1 ; ) ,  with the expected 
number in this category (E1 ; )  if there were no difference in the hazards between 
exposed and unexposed. Note that xic has just 1 degree of freedom irrespective of 
how many events occur. 

' u2 
XMc = V ; d.f. = 1 ,  where 

d E 
d; x n 1 ;  U = L;(di ; - E1;), an  1 ;  = ---n; 

This x2 test is also known as the log rank test; the rather obscure name comes from 
an alternative derivation of the test. 

Example 26.3 
In  the trial of survival in primary bil iary cirrhosis patients, there were 72 deaths 
among the 1 53 patients without central cholestasis at basel ine, and 24 
deaths among the 3 1  patients with central cholestasis a t  baseline. Table 26 .3 



Table 26.3 Calculations needed to derive the Mantel-Cox estimate of the hazard ratio and the corresponding (log rank) test statistic for survival in 

primary biliary cirrhosis patients, with and without central cholestasis at baseline. 

Day, i no; do1 n,,. d11 Q· _ d,, x h01 
I - 11; 

9 1 52 2 31  0 0 
1 9  1 50 0 31  1 0.8287 
38 1 50 2 30 0 0 
48 1 48 0 30 1 0.831 5 
96 1 48 0 29 1 0.8362 

1 44 1 48 1 28 0 0 
1 50 1 47 0 28 1 0.8400 
1 67 1 47 1 27 0 0 
1 77 1 45 0 27 1 0.8430 
1 93 1 44 0 26 1 0.8471 
201 1 44 0 25 1 0.8521 
207 1 44 1 24 0 0 
245 1 43 0 24 1 0.8563 
251 1 43 0 23 1 0.86 14  
256 1 43 0 22 1 0.8667 

Totals 21 .224 

R· _ do1 x h,, 
I -

n1 

0.3388 
0 
0.3333 
0 
0 
0 . 1 591 
0 
0.1 552 
0 
0 
0 
0.1 429 
0 
0 
0 

5.538 

U; = d; _ 
d; x n1; 

n1 

-0.3388 
0.8287 

-0.3333 
0.83 1 5  
0.8362 

-0. 1 591 
0.8400 

-0.1 552 
0.8430 
0.8471 
0.8521 

-0.1 429 
0.8563 
0.86 14  
0.8667 

1 5.686 

V _ 
d; x n1,. x noi 

I - l n, 

0.281 4 
0 . 141 9 
0.2778 
0 . 1401 
0 .1 370 
0.1 338 
0.1 344 
0.1 3 1 1  
0.1 323 
0.1 296 
0.1 260 
0.1 224 
0 . 1231  
0.1 1 94 
0.1 1 56 

7.387 
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shows the calculations needed to derive the Mantel-Cox hazard ratio and associ
ated log rank test statistic for the first 1 5  days on which one or more deaths 
occurred, together with the total values of U, V, Q and R for the whole dataset .  

The estimated hazard ratio is Q/ R = 2 1 .224/5 .538  = 3 .833 .  The interpretation 
is that, on average, the hazard in patients with centra l cholestasis at baseline was 
3 .833  times the hazard in patients without central cholestasis. 

The standard error of the log hazard ratio is 

J[ V/(Q x R)] = J[7 .387/( 2 1 .224 x 5 . 538)] = 0.2507 

The error factor is therefore exp( l .96 x 0.2507) = l . 635, so that the 95 % CI for 
the hazard ratio is 2 . 345 to 6.264. The ( log rank) x2 statist ic is : 

? 1 5 .6862 
XN!c = 

7 .387 
= 33 .3  l ,  P < 0.00 1 

There is thus strong evidence that the hazard rates, and hence survival rates, 
differed between the two groups. 

These methods can also be extended to adjust for different compositions of the 
di fferent groups, such as different sex ratios or different age d istributions. For 
instance, we could stratify addi tionally on sex, and apply the method in the same 
way. 



C H A P T E R  2 7  

Regression analysis of survival data 

27.1  Introduction Criteria for choice of time axis 

27.2 Cox regression More than one time axis 

27.3 Non-proportional hazards 27.5 Links between Poisson regression 

27.4 Choice of time axis in survival and Cox regression 

analyses 27.6 Parametric survival models 

2 7  . 1  I N T R O D U C T I O N  

We now describe Cox regression, also known as proportional hazards regression. 

This is the most commonly used approach to the regression analysis of survival 
data. It uses the same approach as the Mantel-Cox method described in  Section 
26 .5 :  
• i t  assumes that  the ratio of the hazards comparing different exposure groups 

remains constant over time. This is known as the proportional hazards assump
tion; 

• i t  is based on considering the risk sets of subjects sti l l  being fol lowed up at each 
time that an event occurred. At the time of each event, the values of the 
exposure variables for the subject who experienced the disease event are com
pared to the values of the exposure variables for all the other subjects still being 
followed and who did not experience the disease event. 

After introducing Cox regression, we then consider: 
• what to do when the proportional hazards assumption does not appear to hold; 
• the way in which the choice of time axis influences the nature of the risk sets; 
• the link between Cox and Poisson regression; 
• the use of parametric survival models as an alternat ive approach. 
General issues in  regression model l ing, including fitt ing l inear e ffects and testing 
hypotheses, are d iscussed in more detail in Chapter 29. 

2 7 . 2  C O X  R E G R E S S I O N  

The mathematical form o f  the Cox proportional hazards model is : 
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where h( t) is the hazard at  time t, h0( t) is the baseline hazard ( the hazard for  an 
individual in  whom all exposure variables = 0) at t ime t, and x 1  to xP are the p 
exposure variables. 

On the ratio scale the model is : 

When there is a s ingle exposure variable (x1 ) and just two exposure groups (x 1 = 1 
for exposed individuals and 0 for unexposed individuals) the model is described by 
two equations, as shown in Table 27. 1 .  

The hazard ratio comparing exposed with unexposed individuals at t ime t i s  
therefore:  

HR(t) = 
ho( t) exp((3 1 ) = ((3 ) . 

ho(t) 
exp 1 

The model thus assumes that the hazard ratio remains constant over time; i t  
equals exp((3 1 ) .  I t  is th i s  assumption that is highlighted in the name 'proportional 
hazards' regression. The regression coefficient (31 is  the estimated log hazard ratio 
comparing exposed with unexposed individuals. 

Table 27. 1 Equations defining the Cox regression model for the 

comparison of two exposure groups, at time t. 

Exposure group 

Exposed (x1 = 1 )  

Unexposed (x1 = 0)  

Example 27. 1 

Log(Hazard at time t) 

log(ho(t)) + (31 
log(ho(t)) 

Hazard at time t 

ho(t)  x exp(f31 ) 

ho(t) 

Table 27 .2  shows the output from a Cox regression analysis of the effect of central 
cholestatis at baseline (variable name cenc/wO) in  primary bil iary cirrhosis pa
t ients. There is clear evidence that this increased the hazard rate. The results are 
very similar to the Mantel-Cox estimate of the hazard ratio (3 .833 ,  95 % 
CI = 2 .345 to 6 .264), derived in Section 26. 5 .  The square of the Wald z-test statistic 
is  5 . 3872 = 29.02, similar to but a l i ttle smaller than the log rank x2 statistic of 
33 . 3 1 ,  derived in Section 26.5 .  Three points should be noted: 
1 Cox regression analysis is  based on a conditional likelihood estimation procedure, 

in which the values of the exposure variables are compared between individuals 
within the risk sets of individuals being followed at  each t ime at which 
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Table 27 .2 Cox regression output for the model for the effect of central 

cholestasis at baseline in the study of survival in patients with primary bil iary 

cirrhosis, introduced in Example 26.2. 

Hazard ratio P > lzl 95% Cl 

cenchoO 3.751 5.387 0.000 2 .3 1 9  to 6.067 

an event occurs. The baseline hazard ( 1vhich can vary over time) is therefore not 
estimated and is 1101 displayed. 

2 As explained earl ier, the model is based on the proportional hazards assump
tion. This assumption may be investigated graphically, as described in  Section 
26.4. Alternatively, statistical tests of the proportional hazards assumption are 
available, as d iscussed below. 

3 As with all regression models, i t  is straightforward to estimate the effect of more 
than one exposure variable. As usual, we assume that the effects of different 
exposures combine in  a multiplicative manner: this was explained in  detail in 
Section 20.2, in the context of  logistic regression. On the basis of this assump
tion, we may interpret the estimated effect of each exposure variable as the 
effect after controll ing for the confounding effects of other exposure variables in 
the model. This assumption may be examined by fitt ing interaction terms (see 
Section 29.4). 

2 7 . 3  N O N - P R O P O R T I O N A L H A Z A R D S  

Non-proportional hazards correspond t o  a n  interaction between the exposure 
variable and time: in other words the exposure effect (hazard ratio) changes 
over time. I n  addition to the graphical examination of proportional hazards 
described in Section 26.4, many software packages provide statist ical tests of the 
proportional hazards assumption. Three analysis options when evidence of non
proportional hazards is  found are: 
1 Extend the model to include an exposure-time interaction term. For example, 

for a single binary exposure variable, the model could assume: 

hazard ratio = exp(/3 1 + f12 t )  

In  theory, there is no reason that complex changes of the exposure hazard rat ios 
over time should not be modelled. However, not al l statistical software will 
allow this. 

2 If the variable for which there is evidence of non-proportional hazards is  a 
confounder, rather than the main exposure of interest, then the regression may 
be stratified according to the values of this confounding variable. This modifies 
the risk sets, so that  they include only individuals with the same value of the 
confounding variable. The effect of the confounder is not estimated, but its 
effects are controlled for without assuming proportional hazards. 
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3 Split the follow-up t ime into different periods, as described in Section 24.6. I t  is  
then straightforward to fit models that allow the exposure effect to differ 
between t ime periods. Splitting fol low-up t ime can also be used to derive tests 
of the proportional hazards assumption, by looking for interactions between 
exposure and t ime period (see Section 29.4 for a description of tests for inter
action in  regression models). 

2 7 . 4  C H O I C E  O F  T I M E  A X I S  IN S U R V I V A L  A N A L Y S E S  

When following subjects after diagnosis o r  treatment o f  a disease, i t  may 
be reasonable to suppose that the major determinant of variation in the hazard 
will be the t ime since diagnosis or treatment. This was the assumption we made 
in the study of primary biliary cirrhosis, when we examined patients from the 
time they were treated. Our risk sets were constructed by considering al l  
subjects who were at  risk at the times after the start of treatment at which events 
occurred. 

However, there are different options for the choice of t ime axis which may be 
more suitable in other situations. For example, consider the Caerphil ly study of 
risk factors for cardiovascular disease, in which the dates of the first examinations 
took place between J uly 1 979 and October 1 983 ,  and participants were aged 
between 43 and 6 1  when they were first examined. There are three possible choices 
for the time scale for construction of risk sets: 
1 time since recrui tment to the study; 
2 time since birth ( i .e .  age); 
3 year of the study ( i .e. date) . 
Each of these choices will lead to different risk sets (sets of subjects at risk when an 
event occurred) at the times at which events occur. We i l lustrate the differences 
between these t ime scales using ten patients randomly chosen from the Caerphilly 
study. Their dates of birth, entry to, and exit from, the study, together with the 
corresponding ages and t ime in  the study are shown in Table 27 .3 .  

Table 27.3 Dates and ages o f  entry to, and exit from, the Caerphilly study for ten randomly selected subjects. 

Subject Date of first Age at Years in 

number Date of birth examination Date of exit entry Age at exit study (T) Ml 

1 5 1 20 Oct 1 93 1  30  May 1 980 1 8  Dec 1 998 48.61 67. 1 6  1 8.55 0 
1 58 21 Mar 1 933 2 Dec 1 981 9 May 1 984 48.70 5 1 . 1 3  2.43 1 
658 1 2  Aug 1 925 22 Oct 1 981 18 Jul 1 996 56.1 9 70.93 1 4.74 
941 28 Oct 1 933 29 May 1 982 19 Dec 1 998 48.58 65 . 1 4  1 6.56 0 

1 376 1 9  Sep 1 935 2 1  Mar 1 982 25 Nov 1 998 46.50 63 . 1 8  1 6.68 0 
1 467 9 Jan 1 930 6 Jul 1 982 3 Aug 1 993 52.49 63.56 1 1 .08 0 
1 650 19 Nov 1 927 24 Nov 1 982 31 Dec 1 998 55.01 7 1 . 1 2 1 6 . 1 0  0 
1 673 14 Feb 1 926 3 Jul 1 983 31 Dec 1 998 57.38 72.88 1 5 .50 0 
1 754 21  Jul 1 92 1  1 Oct 1 980 31 Dec 1 998 59.20 77.45 1 8.25 0 
1 765 27 Mar 1 924 30 Dec 1 982 1 3  Dec 1 998 58.76 74.71 1 5 .95 0 
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The risk sets corresponding to the three di fferent choices of time axis 
are i l lustrated in Figure 27 . 1 .  The horizontal l ines represent the fol low-up 
time for each subject. The follow-up l ine ends in a closed circle for subjects 
who experienced an MI (numbers I 58 and 658) .  It ends in an open circle 
for subjects who were censored, either because they were lost to follow-up (subject 
1 467 on 3 August 1 993) ,  or because they were still healthy at the time of 
their end of study fol low-up in November or December I 998 ( the other 
seven subjects) .  Subjects whose follow-up is intersected by the dotted vertical 
l ines, at the times of the M ls, are members of the risk set for that M l ,  i .e .  
those with whom the covariates of the patient who experienced the MI are 
compared. 
1 Risk sets corresponding to time from entry to the study, Figure 27 . 1 (a ) :  at the 

time of the first M I  all subjects were still being followed and are therefore in the 
risk set, while at the time of the second MI all subjects except I 58 and 1 467 are 
in  the risk set. 

The majority of published applications of Cox regression use this choice, in 
which all subjects start at time 0 .  This is partly because Cox regression was 
originally developed for data on survival following a defined event, and also 
because until recently most computer programs for Cox regression insisted that 
al l  subjects enter at time 0 .  However, there is no reason why risk sets should not 
be constructed on the basis of delayed entry, and some statistical packages now 
al low flexible choices of time axis in Cox regression. In contrast, choices (2 )  and 
( 3 )  both imply that subjects enter the study at different t imes, as well as having 
different periods of fol low-up. 

2 Risk sets corresponding to choosing age as the time axis, Figure 27. l (b ) :  these 
consist of all subjects who were stil l being fol lowed at a time when they were the 
same age as that of the subject who experienced the M l .  Since subject I 58 was 
relatively young when he experienced his M I ,  only three other subjects are 
members of this risk set. Similarly only four other subjects are members of the 
risk set for subject 658 .  

3 Risk sets corresponding to choosing calendar time as the time axis, Figure 
27 . l (c) :  in this example, because subjects were recruited over a relatively short 
period, the risk sets are the same as for (a) ,  but in general this need not be the 
case. 

Criteria for choice of time axis 

In general ,  the best choice of time axis in survival analysis will be the scale over 
which we expect the hazard to change most dramatically. In studies of survival 
fol lowing diagnosis of a disease such as cancer, the best time axis is usually time 
since recruitment (start of study) .  Calendar time would be a sensible choice in 
studies of survival following an environmental d isaster, such as the leak of 
poisonous fumes from a factory, which occurred at a particular time. I n  contrast, 
recruitment to the Caerphilly study did not depend on the participant experiencing 
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Fig. 27 . 1  Risk sets corresponding to three different choices of time axis, for ten patients randomly chosen 

from the Caerphilly study. The follow-up line ends in a closed circle for subjects who experienced an Ml and 

an open circle for subjects who were censored. The dotted vertical lines show the risk sets at the time of 
each Ml  for the different choices of time axis. 
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a particular event :  simply on the person living in Caerphil ly and being in later 
middle age at the time the study was established. Therefore measuring time from 
recruitment to the study does not seem a sensible choice of time axis: in this case 
age is a better choice. 

More than one time axis 

Finally, we may wish to do a Cox regression that allows for the effect of more than 
one variable to change over time. There are two main reasons for doing this :  
1 we may want to allow for changing rates of d isease according to, say, age group, 

whi le keeping time since an event such as diagnosis of disease as the time axis 
used to define the risk sets; 

2 we may want to al low for t he effect of exposures which are measured more than 
once, and estimate the association of the most recent exposure measurement 
with rates of d isease. 

The procedure is  the same in each case. We simply split the follow-up time for each 
subject into periods defined by ( I )  age group, or (2) the time between exposure 
measurements, in the same way as described at the end of Section 24.6. Providing 
that the software being used for  Cox regression will allow for delayed entry, we 
then fit a standard Cox regression model, controlling for the effects of the time
varymg exposures. 

2 7 . 5  L I N K S  B E TW E E N  P O I S S O N  R E G R E S S I O N  A N D  C O X  R E G R E S S I O N  

We have described two different regression models for the analysis o f  longitudinal 
studies. In Poisson regression we assume that rates are constant within time 
periods, and estimate rate rat ios comparing exposed with unexposed groups. I n  
Cox regression we  make no  assumptions about how the hazard changes over time; 
instead we estimate hazard ratios comparing different exposure groups. This is  
done by constructing risk sets, which consist of all subjects being followed at the 
time at  which each event occurs, and assuming that the hazard ratio is  the same 
across risk sets. 

At the end of Chapter 24 we saw that we may allow for variables which 
change over t ime in Poisson regression by splitting the follow-up time, for example 
into 5-year age groups, and estimating the rate ratio separately in each time 
period, compared to a base l ine period. This is  i l lustrated in Figure 27 .2 ,  using 
5-year age groups, for the ten subjects from the Caerphilly study. We consider the 
total number of events, and total length of follow-up, in each age group. Now 
suppose that we make the age groups smaller ( I -year, say). Only age groups in 
which an event occurs will contribute to the analysis, and the follow-up time 
within each of these groups will be approximately equal. As we make the time 
intervals progressively shorter, we will be left with the risk sets analysed in  Cox 
regress10n . 
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Fig. 27 .2 Follow-up split into 5-year age groups, for ten subjects from the Caerphil ly study. 

2 7 . 6  P A R A M E T R I C  S U R V I V A L  M O D E L S  

80 

Parametric survival models are an alternative regression approach to the analysis 
of survival data in which, instead of ignoring the hazard function, as in  Cox 
proportional hazards models, we model the survivor function in the baseline 
group using one of a choice of mathematical functions. For example, we have 
already seen in Sections 22.3 and 26.4 that if the rate (hazard) is constant over t ime 
then the survivor function is exponential. This is  exactly the assumption of 
Poisson regression, which means that it is therefore identical to a parametric 
survival model assuming an exponential survivor funct ion.  Other commonly 
used survivor function distributions are the Weibull ,  Gompertz, gamma, lognor
mal and log-logistic functions. Weibull models assume proportional hazards and 
usually give very similar estimated hazard ratios to those from Cox models .  
Because parametric survival models explicitly estimate the  survivor function 
they may be of particular use when the aim of a study is to predict survival 
probabilities in different groups. For more details, see Cox and Oakes ( 1 984) or 
Collett ( 2003) .  



PART E 

STAT IST I CA L  M O D E L L I N G  

Previous parts of the book have discussed methods of analysis according to the 
different types of outcome (and exposure) variables. An understanding of what 
statistical method is appropriate given the type of data that have been collected is 
obviously crucia l , but it is  also important to real ize that different statist ical 
methods have much in common, so that an understanding of one method helps 
in understanding others. For example, the interpretation of confidence in tervals 
and P-values follows the same logic, regardless of the part icular situation in  which 
they are derived. We have seen that computer output from different regression 
models is  presented in a similar way, and issues such as testing hypotheses, 
examining interactions between exposure effects and selection of the most appro
priate model also apply to all regression models. 

In this part of the book we present stat istical methods that apply to many types 
of exposure and outcome variables. We begin, in Chapter 28, by introducing 
l ikelihood: the concept that underl ies most commonly used statistical methods. 
In  Chapter 29 we consider general issues in regression modell ing, including the use 
of l ikelihood rat io tests of hypotheses about the parameters of regression models. 

Chapter 30 introduces methods that can be used when the usual model assump
tions are violated :  these provide a means of checking the robustness of results 
derived using standard methods. A common situation in which standard assump
t ions are violated is  when data are clustered; that is when observat ions on 
individuals within a cluster tend to be more similar to each other than to individ
uals in  other clusters. Failure to take account of clustering can lead to confidence 
intervals that are too narrow, and ?-values that are too smal l .  Chapter 3 1  
introduces methods that are appropriate for the analysis of such data. 

Chapter 32 focuses on how evidence can be summarized on a particular subject 
in order to make it accessible to medical practit ioners and inform the practice of 
evidence-based medicine. In particular it covers systematic reviews of the medical 
l i terature, the statistical methods which are used to combine effect estimates from 
different studies (meta-analysis) ,  and sources of bias in meta-analysis and how 
these may be detected . 

Finally, in Chapter 33 we brieny describe the Bayesian approach to statistical 
inference. 





C H A P T E R  2 8  

Likelihood 

28. 1 Introduction 28.6 Likelihood in more complicated 

28.2 Likelihood models 

28.3 Likelihood ratios and supported 28.7 Using likelihood for hypothesis 
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log l ikel ihood ratio and its Wald tests 
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and supported ranges 28.8 Likelihood ratio tests in 

Information and standard error regression models 

28.5 Likelihood in the comparison of 

two groups 

2 8 . 1  I N T R O D U C T I O N  

I n  this chapter, we introduce the concept of likelihood and explain how likelihood 

theory provides the basis for a general approach to using data to yield estimates of 
parameters of interest . The idea that we use data to estimate parameters of interest 
using an underlying probability model is fundamental to statistics. This ranges 
from :  
• simple models t o  estimate a single parameter o f  interest, based o n  assuming a 

normal, binomial or Poisson distribution for the outcome of interest . For 
example, estimating the risk of vertical transmission of H I V  during pregnancy 
or childbirth, in H IV-infected mothers given antiretroviral therapy during 
pregnancy, is based on assuming a binomial distribution for the occurrence 
(or not) of vertical transmission, or a normal approximation to this binomial 
distribution; 

• to multivariable regression models assuming a particular distribution for the 
outcome based on the values of a number of exposure variables. Such models 
relate the probabil ity distribution of the outcome to the levels of the exposure 
variables via the values of one or more parameters. For example, in Example 
24.2, we used Poisson regression to compare rates of myocardial infarction 
according to whether men in the Caerphilly study were current smokers or 
never/ex-smokers. The regression model had two parameters: the log of the rate 
in the never/ex-smokers, and the log of the rate ratio comparing current 
smokers with never/ex-smokers. 

In most of the chapter, we will show how l ikel ihood theory can be used to 
reproduce results that we derived earlier in the book using properties of the 
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normal distribution, and approximations to the normal d istribution . The strength 
of the l ikelihood approach, however, lies in the way i t  can be general ized to any 
statistical model, for any number of parameters. It provides the basis for fitt ing 
logistic, Poisson and Cox regression models. For this reason i t  is of great import
ance in  modern medical statistics. 

This chapter is conceptually fairly sophisticated, and may be skipped at a first 
reading. An understanding of l ikelihood is not essential to the conduct of the 
majority of statistical analysis. However, this chapter does provide insights into 
understanding how regression models are fitted , the different ways that we can test 
hypotheses about the parameters of regression models, the meaning of some of the 
'small print' items obtained on regression outputs, such as the i teration number, 
and why problems may be encountered. We reconrn1end Clayton and Hil ls ( 1 993) ,  
for a fuller explanation of the ideas presented here, and Royall ( 1 997)  for a 
d iscussion of different approaches to statistical inference based on l ikelihood . 

2 8 . 2  L I K E L I H O O D  

Example 28. 1 
We wil l  i l lustrate the idea of l ikelihood through an example, in which we are 
interested in estimating the risk of household transmission of tuberculosis (TB) .  
We have tubercul in tested 1 2  household contacts of an index case of TB. Three of 
the twelve tested posit ive; the other n ine tested negative .  Using the notation 
introduced in Part C for binary outcomes, we have d = 3 and h = 9. The sample 
proportion, p equals 3/ 1 2  or 0.25. As always, we are not interested in  this sample 
result in its own right but rather in  what i t  tells us more general ly about the risk of 
household transmission (rr) . Putting this another way, given that the sample 
proportion was 0.25, what can we deduce from this concerning the most l ikely 
value for 7r? I ntui tively we would answer this question with 7r = 0.25, and we 
would be correct . We will now explain the mathematical basis for this, which can 
be extended to deriving estimates in more complicated situations. 

The approach we use is to calculate the probabil i ty, or likelihood, of our 
observed result for different values of Jr: the l ikelihood gives a comparative 
measure of how compatible our data are with each particular value of 7r. We 
then find the value of 7r that corresponds to the largest possible l ikelihood. This 
value is called the maximum-likelihood estimate (M LE) of the parameter 7r .  

MLE = the value of the parameter that maximizes 

the l ikelihood of the observed resul t  

I n  this case, the l ikelihoods are calculated using the formula for the binomial 
distribution, described in Chapter 1 4. Figure 28 . 1 shows how the value of the 
l ikelihood varies with different values of 7r, and Table 28 . 1  shows the details of 
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Fig. 28. 1 Values of the l ike l ihood for different values of 'IT ,  if d = 3 and h = 9, showing that the maximum 

l ikel ihood estimate is 0.25 .  

Table  28 . 1  Values of  the likelihood of  observing 

d = 3, h = 9 for different values of or. 

Value of 7r 

0.1  
0.2 
0.25 
0.3 
0.4 
0.6 

Likelihood of observed result 

= Mir n3 x (1 - 7r)9 

220 x 0 . 1 3  x 0.99 = 0.0852 
220 x 0.23 x 0.89 = 0.2362 
220 x 0.253 x 0. 759 = 0.2581 
220 x 0.33 x 0. 79 = 0.2397 
220 x 0.43 x 0.69 = 0. 1 41 9  
220 x 0.63 x 0.49 = 0.0 1 25  

the calculations for a few selected values. I t  can be seen that  the l ikelihood 
increases as 7r increases, reaches a maximum when 7r = 0.25, and then decreases. 
Thus, our maximum likelihood estimate is MLE = 0.25, agreeing with our ori
ginal guess. 

This result can be confirmed mathematically. The MLE can be derived by 
differentiating the binomial l ikel ihood 7rd x ( I  - 7r)" to find the value of 7r that 
maximizes it .  The result is d/(d + h)  or d/n, which in this example equals 3/ 1 2  or 
0 .25 .  

I n  simple situations, such as the estimation of a single mean, proportion or rate, 
or the comparison of two means, proportions or rates, the MLE is given by the 
sample value for the parameter of interest ( in other words the usual estimate ) .  This 
i s  the case here; the M LE for the within-household risk of TB transmission equals 
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the proportion who tested tuberculin posi tive 111 the sample of 1 2  household 
contacts of the index case. 

2 8 . 3  L I K E L I H O O D  R AT I O S  A N D  S U P P O R T E D  R A N G E S  

As wel l  a s  concluding that 0 .25 is the most l ikely value for the true probability 'TT of 
the risk of household transmission of TB in our example, i t  is  useful to know what 
other values of 7r are compatible with the data. We now describe how to use 
likelihood ratios, or more specifically their logarithmic equivalent ,  to  give us a 
range of l ikely values for the population parameter ( in this case 7r) ,  which we wish 
to est imate. 

In  our example, the maximum l ikelihood equals 0 .258 1 ,  and the corresponding 
maximum l ikelihood estimate is 7r = 0.25 .  The l ikelihood for any other value of 7r 
will be less than this .  How much less likely is assessed using the l ikelihood ratio (LR): 

. . . Likelihood for 7r 
Likelihood rat10 (LR) = L"k l "h  d h MLE 1 e 1 oo at t e 

Figure 28 .2 shows how the l ikelihood ratio varies across the range of possible 
values and Table 28 .2 shows the details of the calculation for a few selected values 

� 
...J 
-

"C 
0 
0 

J:: 

Q) 
� 
...J 

1 .00 

0.75 

0.50 

0.25 - - - - - - - - - - - - - - : 90% Cl 

-,r_-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

_

-

_

---_-_-J_ 
L 
��/o Cl 

0 4--<�'--'-r���������'--.--'-�....=---==,,,,...������---. 

0 0 .1  0.2 0.3 0.4 0.5 0 .6  0.7 0.8 0.9 1 

Fig. 28.2 Values of the l ikel ihood ratio for different values of "· if d = 3 and h = 9. The horizontal dashed 

l ines show the supported ranges corresponding to 90%, 95% and 99% confidence intervals (see Table 28.3}, 

and the dotted vertical lines show the corresponding confidence l imits. 
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Table 28.2 Values of the likel ihood of observing d = 3, h = 9, 
and corresponding l ikelihood ratio, for different values of 1r. 

Value of ri Likelihood Likelihood ratio 

0 . 1  0.0852 0.0852/0.2581 = 0.3302 
0.2 0.2362 0.2362/0.2581 = 0.91 51 
0.25 (MLE) 0.2581 0.2581 /0.2581 = 1 
0.3 0.2397 0.2397 /0.2581 = 0.9287 
0.4 0 . 1 41 9 0 . 141 9/0.2581 = 0.5498 
0.6 0.01 25 0.01 25/0.2581 = 0.0484 

of 11. By definit ion, the l ikelihood ratio equals I for the M LE ( in this case for 
11 = 0.25)  and less than one for all other values . The shape of the curve of the 
l ikelihood ratio is exactly the same as that of the l ikel ihood in Figure 28 . 1 ,  since 
we have simply divided the l ikelihood by a constant amount, namely the max
imum l ikelihood, which in  this case equals 0.258 1 .  

The l ikelihood ratio provides a convenient measure of the amount of support 
for  a particular value(s )  of 11. The l ikelihood ratios for 11 equal to 0 .2 or 0 .3  are 
close to 1 ,  suggesting that these values are almost as compatible with the observed 
data as the M LE .  In contrast, the l ikelihood ratio for 11 equal to 0 .6 is very small; i t  
is  therefore much less l ikely that the with in-household transmission rate for TB i s  
as high as 0 .6 .  The conclusion is less immediately clear for l ikelihood ratios in 
between, such as a rat io of 0 . 3302 for 11 equal to 0. 1 or 0 .5498 for 11 equal to 0.4. 

By choosing a cut-off value for the l ikelihood ratio, we can derive a supported 

range of parameter values. We classify values of 11 with l ikelihood ratios above t he 
cut-off as supported by the data, and those with l ikelihood ratios below the cut-off 
as not supported by the data. This concept of a supported range of values is 
intuit ively simple; the choice of the cut-off value is the critical issue. Although 
supported ranges arise from a different philosophical basis to confidence intervals, 
the two turn out to be closely l inked. We will show below that, providing the 
sample size is sufficiently large, different choices of cut-off for the l ikelihood ratio 
correspond to different choices of confidence level, as i l lustrated in  Figure 28 .2 .  
For example, a l ikelihood ratio of 0. 1 465 gives a supported range that  approxi
mately coincides with the 95 % confidence interval for r., calculated in t he usual 
way (see Table 28 . 3 ) .  

2 8 . 4  C O N F I D E N C E  I N T E R V A L S  B A S E D  ON T H E  LOG L I K E L I H O O D  
R A T I O  A N D  I T S  Q U A D R A T I C  A P P R O X I M A T I O N  

We work with the logarithm o f  the l ikelihood ratio t o  derive confidence intervals, 
rather than the l ikelihood rat io itself because, provided the sample size is  suffi
ciently large, the log LR can be approximated by a quadratic equation, which is 
easier to handle mathematically than the l ikelihood ratio. Using the rules of 
logarithms (see the box on p. 1 56 ) :  
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log( LR) = log( likelihood for 7r) - log(l ikelihood at the MLE) 

Abbreviating th is  formula by using the letter L to denote log l ikelihood gives: 

log(LR) = L(7r) - L(MLE) 

Note that ,  as i n  earlier parts of this book, we use logarithms to the base e (natural 
logarithms); see Section 1 3 .2 for an explanation of logarithms and the exponential 
function .  

The log(LR)  corresponds to a difference in log l ikelihoods. Its maximum occurs 
at the M LE and equals zero. Figure 28.3(a) shows the log( LR) for the data in 
Example 28 . 1 on within-household transmission of TB. Figure 28.3(b) shows how 
the shape of the curve would change for a larger sample size ( 1 20 instead of 1 2), 
but with the same MLE of 0.25. The dashed l ines in Figure 28.3 show the best 
quadratic approximations to these particular log l ikelihoods. For the small sample 
size in  Figure 28 .3 (a)  the quadratic approximation has a relatively poor fit, while 
for the larger sample size in Figure 28 .3(b) there is a close fit between the log 
l ikelihood and the quadratic approximation. 

The quadratic approximation is chosen to meet the log(LR) at the M LE and to 
have the same curvature as the log(LR) at this point. It is symmetrical about this 
point and its maximum value is zero. I t  can be shown that its equation can be 
written in the following way: 

Log(LR) = -
� (M L� - e) 2 

where e represents the parameter that we wish to estimate and - 1 ;  s2 is the 
curvature at the maximum. In  our example e would be 71", the within-household 
risk of transmission of TB. In Example 6. 1 ,  e would be µ, the mean sprayable 
surface area of houses that we wished to estimate in  order to be able to calculate 
how much insecticide would be needed to spray the whole area as part of the 
malaria control programme. In this case, we had a quantitative outcome which we 
assumed was normally distributed. 

The quadratic approximation plays a key role in parameter estimation be
cause: 
1 In simple situations, such as the estimation of a single mean, proportion or rate, 

or the comparison of two means, proportions or rates: 
• the MLE equals the sample value for the parameter of interest (see Section 

28 .2) ;  
• the denominator S equals the usual estimate of the standard error. 
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(a) d=3 and h=9 
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F ig .  28.3 Values of  the l ikel ihood ratio for different values of  ?T, if (a) d = 3 and h = 9, or (b) d = 30 and 

h = 90. The dashed lines show the best quadratic approximations to the log l ikelihood ratio curves, fitted at 

the MLE (7r = 0.25)  and the dotted l ines show the 95% confidence intervals based on the quadratic 

approximations. 
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2 When the underlying distribution is normal, the quadratic equation gives an 
exact fit to the log(LR) .  

3 When the sample size is sufficiently large, then the quadratic equation gives a 
close fit to the log(LR),  regardless of the underlying probabil ity d istribution .  
This arises from the Central Limit Theorem (see Section 5 .2) ,  which shows that  
the normal distribution provides a good approximation to the sampling distri
bution of the parameter of interest, whatever its underlying d istribution, pro
vided that the sample size is sufficiently large. 

4 The closest quadratic approximation to the log(LR) can be found using a 
process known as iterat ion, as explained in Section 28 .6 .  This involves calcu lat
i ng the l ikelihood ratio, and its log, only at selected points of the curve. I t  avoids 
the need to calculate the whole of the curve. 

These facts together mean that the quadratic approximation provides a method to 
derive M LEs and corresponding confidence intervals that avoids the need for 
complicated mathematics, and that works in situations with complex underlying 
distributions, as well as giving the same results as standard methods in  simple 
situations. 

Since fitt ing a quadratic approximation to the log(LR) is equivalent to using a 
normal approximation for the sampling distribution for the parameter e that we 
wish to estimate, the 95 % confidence interval based on the quadratic approxima
tion must be: 

95 % CI = MLE - 1 .96 x S to MLE + 1 .96 x S 

Link between confidence intervals and supported ranges 

At the end of Section 28 .3 ,  we noted that a l ikelihood ratio of 0 . 1 465 gives a 
supported range that approximately coincides with the 95 % confidence interval. 
We will now derive this l ink. 

Since the quadratic approximation for log(LR) is :  

1 (MLE - B)2 
Log(LR) = - l S 

And since, 

M LE - lower 95 % CL = MLE - (MLE - 1 .96 x S) = l .96S 

and 

MLE - upper 95 % CL = MLE - (MLE + 1 .96 x S) = - l .96S 
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the values of the log(LR) curve at the 95 % confidence limits (CL) are both : 

1 .962 
Log(LR)  for 95 % CI = - -2- = - 1 .9208 

since the S's in  the numerator and denominator cancel out, and since 
( - 1 .96)2 = 1 . 962 . Anti logging this gives the cut-off value of the likelihood ratio 

corresponding to the 95 % confidence interval: 

LR for 95 % CI = e- 19208 = 0. 1 465 

Table 28.3 summarizes the cut-off values of the l ikelihood ratio and its logarithm 
corresponding to 90 %, 95 % and 99 % confidence intervals. Note that there is only 
a close agreement between standard confidence intervals and supported ranges 
based on these cut-offs when the quadratic approximation gives a close fit to the 
log(LR) .  

Table 28.3 Cut-off values for the l ikel ihood ratio, and its logarithm, corresponding to 

90%, 95% and 99% confidence intervals, assuming that the underlying distribution is 

normal or approximately normal. 

90% Cl 95% Cl 99% C l  

% point of normal distribution 1 .6449 1 .96 2 .5763 
Cut-off value for log(LR) -1 .3529 -1 .9208 -3.31 87 
Cut-off value for LR 0.2585 0.1 465 0.0362 

Information and standard error 

The quantity l /S2 ( the multiplier of 1/2 ( M LE - 8)2 in the quadratic approxima
tion) is known as the information in the data. The larger the value for the infor
mation, the more sharply curved are the log(LR), its quadratic approximation, the 
l ikelihood ratio and the l ikel ihood curves. The more information that the data 
contain about the parameter, the smaller is its standard error, the more precise is 
our estimate, and the narrower is  the confidence interval .  

2 8 . 5  L I K E L I H O O D  IN T H E  C O M PA R I S O N  OF TWO G R O U P S  

Example 28.2 
So far we have described the principles of l ikel ihood in the simplest context of a 
single sample and a single parameter to be estimated. We wil l now il l ustrate its 
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extension to the comparison of two exposure groups, using the data from the 
Guatemala morbidity study presented in Table 23 . 1 .  This table compared the 
incidence rate, } q = 33/355, of lower respiratory infections among children aged 
less than 5 years l iving in poor housing condi tions, to the rate, },0 = 24/ 5 1 8  among 
those l iving in good housing. The rate ratio was: 

. 33/355 
rate rat1o (B) = } q j},o = 

2415 1 8  
= 2.0 1 

As explained in Chapter 24 on Poisson regression, we can re-express this as: 

rate in  exposed group = rate in  unexposed group x exposure rate ratio 

giving us the basis for a model which expresses the rate in  each group in terms of 
two model parameters. These are: 
• the baseline rate, },o, in the unexposed group; 
• the exposure rate ratio, e. 
Applying the l ikel ihood approach means that we want to find the most l ikely 
values of these two parameters given the observed data. In other words we want to 
find their maximum likelihood estimates (MLEs) .  I t  can be shown that :  
1 Using the distribution of the numbers of infections in each of the two groups, 

we can derive a formula for the log l ikel ihood (L) of the observed data for 
various combinations of the two parameters. This is : 

where d1 and do are the number of observed infections and T1 and To are the 
child-years of follow up in the exposed (poor housing) and unexposed (good 
housing) groups respectively. 

2 As we have two parameters we have a log l ikel ihood surface rather than a curve. 
This can be thought of as l ike the map of a hil l ;  the two parameters correspond 
to the two axes of the map, and contours on the hill correspond to values of the 
log l ikelihood rat io .  We want to find the M LEs (equivalent to finding the peak 
of the hi l l )  and the curvature at this point in order to fit a three-d imensional 
quadratic approximation to the surface (of the hi l l ) .  

3 In  this case i t  is  possible to show that the value of },o that maximizes the log 
l ikelihood is :  

and that substituting this formula for },0 into the equation for log l ikel ihood and 
rearranging it gives: 

(BT1 ) ( BT1 ) 
L = d1 log Ta - (do +  d1 ) log I +  Ta + constant 
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This is called the profile log likelihood for e. In our hi l l  analogy, it is equivalent 
to slicing thro ugh the hill at its peak and working with the resulting cross
section. 

4 Figure 28 .4 shows the profile log l ikel ihood ratio for various values of the 
rate ratio using this re-expression . Note that the rate ratio is plotted on a log 

scale, and that doing this makes the log l ikelihood ratio curve close to a 
quadratic. 

5 The log l ikelihood (and corresponding l ikelihood) is  maximized when 

},o = 24/5 1 8, the observed rate in the unexposed group; 

e = } q /},o = 2 .0 1 ,  the observed rate ratio 

These M LEs are the same as the estimates obtained directly from the data in 
Example 23 . l .  

6 Because the rate ratio is  plotted on a log scale, the equation of the quadratic 
approximation is: 

L ( LR )  = - � ( log(M LE) - log(B))2 
where S = s .e .  of the log rate ratio og 
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Fig. 28.4 Profile log l i kelihood ratios for the rate ratio (plotted on a log scale), for the data on respiratory 

infections in Guatemalan children. The dashed l ine shows the best quadratic approximation to the log 

l i kel ihood ratio at the maximum, and the dotted l ines show the values of the log l ikel ihood ratio 
corresponding to the nu l l  value ( 1 )  and the maximum-likelihood estimate (2 .01 ) of the rate ratio. 
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7 The 95 % confidence in terval is calculated from the M LE and the standard error 
of the log(rate ratio), using an error .factor, as explained in Chapter 23 .  I n  this 
example, 

S = J( l /do + 1 /d1 ) = J( l /33 + 1 /24) = 0.2683, g1vmg 

EF = exp( l .96 x 0.2683) = 1 .69 

Thus, 95 % CI = 2 .0 1 / 1 .69 to 2.0 1 x 1 .69 = 1 . 1 9 to 3 .39 

With 95 % confidence, the rate of acute lower respiratory infections among 
children l iving in  poor housing is  between 1 . 1 9 and 3 .39 t imes the rate among 
children living in good housing. 

2 8 . 6  L I K E L I H O O D  I N  M O R E  C O M P L I C A T E D  M O D E L S 

In most of this chapter, we show how l ikelihood theory can be used to reproduce 
results that we derived earlier in the book using properties of the normal distribu
tion, and approximations to the normal distribution . The strength of the l ikeli
hood approach, however, l ies in  the way it can be generalized to any statistical 
model, for any number of parameters. 

Thus the l ikelihood approach is used to derive maximum l ikelihood estimates 
( MLEs) and standard errors of the parameters in  a regression model. Since the 
M LE for any one parameter wil l depend on the val ues of the other parameters, i t  
is  usually not possible t o  write down equations for what each of  the M LEs wil l  be. 
I nstead, they are fitted by a computer program using a process known as iteration: 

1 This starts with a guess for the M LEs of the parameters; for example, some 
programs use the nul l  values corresponding to no effects of the exposure 
parameters on the outcome as the starting point. 

2 Next, the value of the log likelihood is calculated using these 'guesstimates ' .  
3 The value of each of the parameters is then perturbed in both directions, and the 

values of the log l ikelihood calculated to obtain the gradient and curvature of 
the log l ikelihood curve at this point. 

4 The gradient and curvature are then used to fit the best (multi-dimensional) 
quadratic approximation to the log l ikelihood curve at this particular point. 

5 The maximum of the fitted quadratic is  then located . 
6 The whole process is then repeated using this maximum as the best guess for the 

M L  Es. 
7 The iteration stops when subsequent steps yield the same values for the guess for 

the M LEs. The fit is said to have converged. Some programs wil l record the 
number of i teration steps it required to obtain this convergence. 

8 Occasionally the program fails to achieve convergence. The main causes of this 
are: 

• insufficient data to support the estimation of the number of parameters 
there are in the model; 
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• profile log l ikelihood( s) that are very non-quadratic. 
Logistic, Poisson and Cox regression all use logarithmic transformations of the 

parameters in order to make the profile log l ikelihoods approximately quadratic in 
form. The l ikelihood for simple and multiple regression is  based on the normal 
distribution, and has an exact quadratic form; the maximum l ikelihood estimates 
obtained are equivalent to those obtained using the least squares approach (see 
Chapters 1 0  and 1 1 ) .  

2 8 . 7  U S I N G  L I K E L I H O O D  FOR H Y P O T H E S I S  T E S T I N G  

We wil l  now describe how the l ikelihood approach can be used t o  provide a 
general means of hypothesis testing. As explained in Chapter 8, a hypothesis 
test is based on calculating a test statistic and its corresponding P-value (also 
known as a significance level), in order to assess the strength of the evidence 
against the null hypothesis (of  no association between exposure and outcome in  
the population) .  The smaller the  P-value, the  stronger is the evidence against the 
null hypothesis. 

There are three different types of tests based on the log l ikelihood : 
1 The likelihood ratio test, based on the value of the log l ikelihood ratio at the nul l  

value of  the parameter. 
2 The Wald test, which is similar but uses the value of the fitted quadratic 

approximation to the log l ikel ihood ratio at the null ,  rather than the actual 
value of the log l ikelihood ratio at this point. 

3 The score test, based on fitt ing an alternative quadra tic approximation to the 
log l ikel ihood ratio, which has the same gradient and curvature at the null value 
of the parameter, rather than at the MLE.  

Likelihood ratio tests 

The l ikelihood ratio test is based on the value of the log l ikelihood ratio at the nul l  
value of the parameter, us ing the fact that i t  can be shown that providing the log 
likelihood ratio curve is close to a quadratic: 

-2 x log(l ikelihood ratio) has a x2 distribution with 1 d . f. 

We therefore work with minus twice the log(l ikelihood ratio) ;  this is called the 
likelihood ratio statistic (LRS) : 

LRS = -2 x log(LR)  = -2 x (Lnuu - LMLE) is x2 with 1 d.f .  

I n  Example 28 .2 ,  based on the data from the Guatemalan morbidity study 
presented in  Table 23 . 1 ,  we found that the MLE for the rate ratio of the incidence 
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of lower respiratory infections among children living in poor compared to good 
housing conditions was 2.0 1 .  We noted that the formula for the profile log 
l ikelihood shown in Figure 28.4 is: 

(8T1 ) ( 8T1 ) 
L = d1 log To - d log 1 + To  + constant 

Calculating this for e =  1 (nul l )  and e = 2 .0 1  ( M LE) gives : 

( l x 355) ( l x 355) 
L11u11 = 33 x log 

5 1 8  
- 57 x log 1 + 

5 1 8  
+ constant 

= (33 x -0 .37786) - (57 x 0 .52 1 96) + constant = -42.22 1 1  + constant 

(2 .0 1 x 355) ( 2.0 1 x 355) 
LMLE = 33 x log 

5 1 8  
- 5 7  x log 1 + 

5 1 8  
+ constant 

= ( 33  x 0 .32028) - (57 x 0.86605) + constant = -38 . 7956 + constant 

The difference between these is the log(LR) :  

Lnull - Lmax = -42.22 1 1 + 38 .7956 = -3 .4255 

This is  shown in  Figure 28 .4, in  which the values of the log l ikelihood ratio  at the 
null value (8 = 1 )  and the M LE (8 = 2.0 1 )  are depicted by the horizontal  dotted 
l ines. 

The l ikel ihood ratio statistic is: 

LRS = -2 X ( Lnull - Lmax) = -2 X -3 .4255 = 6 .85 1 0  

The corresponding P-value, derived from the x2 distribution with I d . f. ,  i s  
P = 0.0089. There is  therefore good evidence against the nul l  hypothesis, suggest
i ng that poor housing conditions did increase the rate of respiratory infections 
among the Guatamalan children. 

Wald tests 

The Wald test is similar to the l ikelihood ratio test, but is based on the value of the 
filled quadratic approximation to the log l ikelihood ratio at  the null value of 
the parameter of interest, rather than the actual value of the log l ikelihood ratio 
at this point. Recall from Section 28.4 that the quadratic approximation to the log 
l ikelihood ratio  is  of the form: 

1 (M LE - 8)2 
Log(LR)quad = - 2 S 

The Wald test l ikelihood ratio statistic based on the quadratic approximation is  
therefore: 
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? ? (MLE - Bnull )- (MLE)- . LRSwald = -2 X log(LR)quad = 
S 

= -5- , if Bnu l l = 0 

For the data in Example 28 .2 (and 23 . 1 ) , the quadratic approximation to the 
log( LR) has been fitted using the log(rate ratio ) . Therefore: 

e = log(rate ratio) 
MLE = log(2 .0 l )  = 0.6963 
S = 0 .2683 (see Section 28 . 5 above) 

(0.6963)2 LRSwa1ct = 0 .2683 = 6.7352 

P = 0.0094 (derived from x2 with 1 d .f . ) 

In this example, the Wald and l ikelihood ratio tests yield very similar results, 
as the quadratic approximation gives a close fit to the log l ikelihood ratio 
curve. 
More commonly, the Wald test is carried out as a z-test, using the square root of 

the l ikelihood ratio statistic. This has a particularly convenient form : 

Wald statistic, 
MLE 

- -
S 

, if Bnull = 0 

and follows a standard normal distribut ion, since a x2 distribution with I d.f. is 
equivalent to the square of a standard normal distribution. This is the basis for the 
Wald tests described for logistic regression (Chapter 1 9 ) , Poisson regression 
(Chapter 24) and Cox regression (Chapter 27) . 
For the data i n Example 28 .2, this formulation gives: 

0 .6963 . ::: = -0
-- = 2 .5952 (equivalent to )6.7352) .2683 

As before, P = 0.0094. 

Score tests 

Much of the reasoning in this chapter has derived from fitting a quadratic 
approximation to the log likelihood ratio, chosen to have the same value and 
curvature at the MLE. The score test uses an alternative quadratic approximation, 
chosen to have the same value, gradient and curvature as the log l ikelihood ratio 
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at the null value of the parameter rather than at its MLE. Its form is similar to that 
of the log likel ihood ratio and Wald tests: 

u2 Score test = -2 X log(LR)quad fitted at nul l = V 
where U = gradient and V = -curvature of the fitted log(LR) at Bnul l 

The Mantel-Haenszel statistics derived in Chapters 1 8  and 23 are of this form: 

? v2 
X�rn = 

V 

and are score tests. V, the gradient of the log l ikelihood at the null value of 
the parameter, is also known as the score, and V (minus the curvature) is 
also known as the score variance. The standard chi-squared statistic (see 
Chapter 1 7) 

x2 = L, 
( o - £)2 

E 

can also be shown to be a special fom1 of the score test. 

Choice of method 

All three methods described in this section for calculating a P-value are approxi
mate. The exception is the special (and unusual) case when the parameter of 
interest is the mean, µ, for a normal distribution, for which we know the standard 
deviation, a. I n this instance, the three methods coincide, as the log l ikelihood 
ratio is exactly quadratic, and yield an exact P-value. 
The three methods will give quite different answers unless the quadratic ap

proximations provide a good fit to the log l ikelihood ratio curve over the region of 
the curve between the MLE and the null value. In genera l it is possible to get a 
reasonably close fit provided the sample size is sufficiently large, and provided an 
appropriate scale is used for the pararneter(s) of interest. In particular, for odds, 
rates, odds ratios and rate ratios, it is generally preferable to use a logarithmic 

transformation, as was done in Example 28.2 .  
The values of the Wald and score tests are both derived from the quadratic 

approximation, which is influenced by the particular scale used for the parameter. 
Their values will therefore depend on what, if any, transformation is used. In 
contrast, the likelihood ratio test yields the same results whatever scale i s used for 
the parameter of interest, since a change of scale simply changes the shape of 
the log(LR) curve in the horizontal direction, but does not affect the height of the 
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curve, or the relative heights between two values of the parameter. This is a 
considerable advantage. 
However, if the three methods yield very different results, even after using an 

appropriate scale for the parameter(s), then it is usual to advise the use of exact 
P-values ( see Clayton & Hills, 1 993,  for detai ls ) , although these are not without 
their own difficulties. 
Note that when the MLE and the null values are far apart, all three methods will 

always yield very small P-values. Thus, although it may not prove possible to 
obtain good quadratic approximations, and al though the P-values may therefore 
differ numerically, this is unlikely to substantially a ffect the conclusions. 

2 8 . 8  L I K E L I H O O D  R A T I O  T E S T S  IN R E G R E S S I O N  M O D E L S 

Hypothesis testing in regression models can be carried out using either Wald tests 

or likelihood ratio tests. We favour likelihood ratio tests for all but the simplest of 
cases, for the fol lowing reasons: 
• the lack of dependence of the l ikelihood ratio statistic on the scale used for the 

parameter(s) of interest; 
• the ease with which the calculation and interpretation of l ikelihood ratio 
statistics can be carried out in more complex situations, as described below; 

• in contrast, although Wald tests are directly interpretable for exposure vari
ables which are represented by a single parameter in the regression model ( see 
Examples 1 9 . l and 24. 1 ) , they are less useful for a categorical variable, which is 
represented by a series of indicator variables in the regression model (see 
Section 29.4). 

The l ikelihood ratio test described above for a single exposure is a special case of a 
more general l ikelihood ratio test that applies to more complex situations involv
ing several model parameters. An example is in regression modelling where we 
have estimated the effect of a categorical exposure variable using k indicator 
variables and wish to test the null hypothesis that the exposure has no association 
with the outcome. In such situations we wish to test the joint null hypothesis that k 
parameters equal their nul l values. The likelihood ratio test is based on comparing 
the log likel ihoods obtained from fitting the following two models : 
1 Lexc , the log l ikelihood of the model excluding the parameter(s) to be tested; 
2 Linc ,  the log l ikelihood of the model including the parameter(s ) to be tested . 
Then the likelihood ratio statistic (LRS) has a x2 distribution with degrees of 
freedom equal to the number of parameters omitted from the model: 

LRS = -2 x log(LR) = -2 x (Lexc - L inc ) is x2 with k d .f. 

Thus Linc is the value of the log likelihood when all parameters equal their MLEs, 
and Lexc the value of the log likelihood when the k chosen parameters equal their 



314 Chapter 28: Likelihood 

nul l values and the other parameters equal their MLEs for the restricted model, 
excluding these parameters. 
The l ikelihood ratio can be used to compare any two models where one is a 

restricted form of the other. Its use in regression model l ing wil l be described in 
detail in Chapter 29 .  
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Regression modelling 
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29.4 Hypothesis testing in regression regression models 

models Testing for a l i near effect 

Hypothesis test for a single parameter Testing for departure from l inearity 
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exposure with more than one categorical variables 

parameter Testing l inearity using quadratic 

Hypothesis tests in multivariable exposure effects 
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models 29.7 Collinearity 
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interaction to include in a regression model 
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Likelihood ratio test for interaction exposure 

Interactions with continuous variables Deriving a regression model to predict 

Confounding and i nteraction the outcome 

Regression models with more than Developing an explanatory model for 

two variables the outcome 

2 9 . 1  I N T R O D U CT I O N  

I n  previous chapters we have described simple and mult iple linear regression for 
the analysis of numerical outcome variables, logistic regression for the analysis of 
binary outcome variables, and Poisson and Cox regression for the analysis of rates 
and survival data from longitudinal studies, as summarized in Table 29. 1 .  We have 
shown how al l these types of regression modelling can be used to examine the 
effect of a particular exposure (or treatment ) on an outcome variable, including: 
• Comparing the levels of an outcome variable in two exposure (or treatment) 
groups. 

• Comparing more than two exposure groups, through the use of indicator 
variables to estimate the effect of different levels of a categorical variable, 
compared to a baseline level (see Section 1 9 .4) . 



316  Chapter 29: Regression modelling 

• Estimating a l inear (or dose-response) effect on an outcome of a continuous or 
ordered categorical exposure variable. 

• Controll ing for the confounding effect of a variable by including it together with 
the exposure variable in a regression model . We explained that this assumed 
that there was no interaction (effect modification) between the exposure and 
confounding variables. That is, we assumed that the effect of each variable on 
the outcome was the same regardless of the level of the other. 

In this chapter, we focus on general issues in the choice of an appropriate regres
sion model for a particular analysis. These are: 
• Understanding the similarities and differences between the different types of 
regression models. 

• Deciding between different expressions of the outcome variable, and their 
implication for the type of regression model. 

• Hypothesis testing in regression models. 
• Investigating interaction (effect modification) between two or more exposure 
variables, and understanding its implications. 

• Investigating whether an exposure has a linear (dose-response) effect on the 
outcome variable. 

• Understanding the problems caused when exposure and/or confounding vari
ables are h ighly correlated. This is known as collinearity. 

• Making the final choice of exposure/confounding variables for inclusion in the 
regression model. 

2 9 . 2  T Y P E S  O F  R E G R E S S I O N  M O D E L  

The different types o f  regression models described i n  this book are summarized i n  
Table 29. 1 .  I t  i s  useful to distinguish between: 
• Simple and multiple linear regression models, in which the outcome variable i s 
numerical, and whose general form for the effects of p exposure variables is : 

These are known as general Linear models. The quantity on the right hand side of 
the equation is known as the Linear predictor of the outcome y, given particular 
values of the exposure variables x 1 to x,, . The /]'s are the regression coefficients 

associated with the p exposure variables. 
• All other types of regression models, including logistic, Poisson and Cox regres
sion, in which we model a transformation of the outcome variable rather than 
the outcome itself. For example, in logistic regression we model the log of the 
odds of the outcome. Apart from this transformation, the general form of the 
model is similar to that for mult iple regression: 

log odds of outcome = log(-n-) = /30 + /31 x1  + f32x2 + . . .  + /3,,x,, 
I - n 
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Table 29. 1 Summary o f  the main regression models described in Parts B t o  D o f  this book. 

Regression model 

Type of outcome Link Measure of 

variable Type Chapter function exposure effect Effects 

Numerical Linear 1 0/1 1 Identity Mean difference Additive 

(Simple/Multiple) 

Binary Logistic 1 9  Log it Odds ratio Multiplicative 

Matched binary Conditional logistic 2 1  Log it Odds ratio Multipl icative 

Time to binary Poisson 24 Log Rate ratio Multipl icative 

event 

Time to binary Cox 27 Log Hazard ratio Multipl icative 

event 

These regression models are known as generalized linear models. The linear 
model for the exposure variables is said to be related to the outcome via a 
link function. For logistic regression, the link function is the logit ( log odds) 
function, and for Poisson and Cox regressions, it is the logarithmic function. 
Note that multiple regression is a special case of a genera lized l inear model in 

which the l ink function is the identity function f(y) = y .  
• Conditional regression models, such as conditional logistic regression and Cox 
regression. These are special cases of generalized linear models in which estima
tion is based on the distribution of exposures within case-control strata or 
within risk sets. Likelihoods (see Chapter 28) for these models are known as 
conditional likelihoods. 

All regression models are fitted using the maximum likelihood approach de
scribed in Chapter 28 . The estimates obtained for the regression coefficients are 
called maximum-likelihood estimates. There are two important differences worth 
noting between multiple regression and the other types of general ized l inear 
models: 
I Multiple regression models assume that the effect of exposures combine in 
an additive manner. I n all the other generalized l inear models discussed in 
this book it is a log transformation of the outcome (odds, rate or hazard ) 
that is related to the l inear predictor. This means that exposure effects are 
multiplicative ( see the detai led explanation for logistic regression in Section 
20.2) and that results of these models are most easily interpreted on the ratio 
scale. 

2 Since mult iple l inear regression is based on the normal distribution, its 
log l ikelihood has an exact quadratic form (see Section 28.4) . This means that 
Wald tests and l ikelihood ratio tests give identical results (see Sections 28 . 7 
and 29.4) . It also means that estimates obtained using maximum-likelihood 
are identical to those obtained using least-squares as described in Chapters I O  
and 1 1 . 
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2 9 . 3  D E C I D I N G  H O W  T O  E X P R E S S  T H E  O U T C O M E  V A R I A B L E  

I t  i s  often the case that we have a choice o f which regression model t o use, 
depending on how the outcome variable is expressed. For example, blood pressure 
may be expressed as a continuous, ordered categorical or binary variable, in which 
case we would use l inear, ordinal logistic or logistic regression respectively. 
Similarly, a study of factors influencing the duration of breastfeeding could be 
analysed using Poisson or Cox regression, or using logistic regression by defining 
the outcome as breastfed or not breastfed at, say, age 6 months. 
In making such choices we need to balance two (sometimes opposing) consider

ations: 
1 I t is desirable to choose the regression model that uses as much of the information 

in the data as possible. In the blood pressure example, this would favour using 
l inear regression with blood pressure as a continuous variable, since categoriz
ing or dichotomizing it would discard some of the information collected 
(thro ugh using groups rather than the precise measurements). In the breastfeed
ing example, Cox or Poisson regression would be the preferred regression 
models, since the logistic regression analysis would discard important infor
mation on the precise time at which breastfeeding stopped. 

2 I t is often sensible to use simpler models before proceeding to more complex ones. 
For example, in exa1nining the effect of exposures on an ordered categorical 
variable we might start by collapsing the variable into two categories and using 
logistic regression, before proceeding to use ordinal logistic regression to ana
lyse the original outcome variable. We could then check whether the resul ts of 
the two models are consistent, and assess whether the gain in precision of 
exposure effect estimates obtained using the original outcome variable justifies 
the extra complexity. 

2 9 . 4  H Y P O T H E S I S  T E S T I N G  I N  R E G R E S S I O N  M O D E L S  

Hypothesis testing is used i n  regression models both to test the nul l hypothesis 
that there is no association between an exposure variable and the outcome, and in 
order to refine the model, for example by: 
• Examjning the assumption of no interaction (effect modification) between two 
or more exposure variables (see Section 29.5 ) .  

• Deciding between the different forms in which an exposure/confounder vari
able might be included, such as deciding between modelling the effect of a 
categorical exposure variable using indicator variables or including it as a linear 
(dose-response) effect (see Section 29.6) . 

• Deciding whether a variable needs to be included in the final regression model 
(see Section 29.8) .  

Hypothesis testing can be carried out using either Wald tests or likelihood ratio 

tests, as described in Section 28 .7 .  The P-values corresponding to the different 
parameter estimates in computer outputs are based on Wald tests. These are 
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directly i nterpretable for exposure effects that are represented by a single param
eter in the regression model. Examples have been given in Example 1 9. 1 for the 
logistic regression of micro filarial infection with the binary exposure area 
( I  = rainforest/O = savannah) and in Example 24. 1 for the Poisson regression of 
myocardial infarction with the binary exposure 'cursmoke' ( I  = men who were 
current smokers at the start of the study /0 =men who were never or ex-smokers at 
the start of the study) . When an exposure effect is assumed to be l inear ( see 
Sections 1 9 . 3 and 29.6) it is also represented by a single parameter of the regres
sion model . 
Single parameter Wald tests are, however, less useful for a categorical variable, 

which is represented by a series of indicator variables in the regression model. 
Thus in Example 24.2, the Poisson regression output (Table 24.6 ) for the effect of 
social class on the rate of myocardial infarction has six parameter estimates, the 
rate in the basel ine group and the five rate ratios comparing the other social class 
groups with the basel ine . Wald z statistics and P-values are given for each of these 
five social class groups, enabling each of them to be compared with the basel ine. 
What is needed, however, is a combined test of the nul l hypothesis that social class 
has no influence on the rate of myocardial infarction . Some computer packages 
have an option for a multi-parameter Wald test to do this . 
We prefer instead to use likelihood ratio tests for all but the very simplest of 

cases, both for the reasons given in Chapter 28, and for the ease with which they 
can be calculated in all situations. As explained in Chapter 28, the likelihood ratio 

statistic (LRS) is calculated as minus twice the difference between the log l ikeli
hoods obtained from fitting the following two models: 
1 Lexc , the log l ikel ihood of the model excluding the variable(s ) to be tested; 
2 Linc , the log l ikelihood of the model including the variable( s) to be tested . 
This fol lows a x2 distribution with degrees of freedom equal to the number of 

parameters omitted from the model . For a simple binary expo ure the degrees of 
freedom will equal one, and for a categorical exposure the degrees of freedom wil l 
equal the number of groups minus one. 

LRS = -2 X (Lexc - Linc) 

is x2 with d .f . = number of additional parameters in the model 
i ncluding the exposure variable(s) to be tested 

Note that the value of the log l ikelihood is a standard part of the computer output 
for a regression model . 

Example 29. 1 
We will i l lustrate the use of the l ikelihood ratio test in the context of the Caerphil ly 
cohort study, which was introduced in Chapter 24. We wil l base this on the 
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following three d ifferent Poisson regression models for rates of myocardial infarc
tion fitted i n that chapter: 
l Table 24.4: Cursmoke comparing smokers at recrui tment with never/ex-
smokers. 

2 Table 24.6: Socclass comparing six social class groups. 
3 Table 24.9: Model including both Cursmoke and Socclass. 
The values of the log likel ihoods for these three models, together with the model 
including no exposure variables (the 'constant-only model' ) are summarized in 
Table 29.2.  We will refer to them as Lmodel 1 to Lmodel 4 ·  The constant-only model, 
which has a single parameter corresponding to the constant term, is fitted by 
specifying the type of regression and the outcome, and nothing else. 
Note that the parameter estimate corresponding to the 'constant' term is 

different for each of the four models. I t represents the rate in the baseline group 
(those non-exposed to al l of the exposure variables incl uded in the model) against 
which all other comparisons are made. Its value therefore depends on which 
exposure variables are included in the model. 

Hypothesis test for a single parameter 

Cursmoke is a binary exposure variable. Model 2 therefore has two parameters: 
1 Constant : the rate of myocardial infarction in the baseline group (never/ex-
smokers), and 

2 Cursmoke: the rate ratio comparing current smokers with never or ex-smokers. 
The likel ihood ratio statistic to test the nul l hypothesis that myocardial infarction 
rates are not related to smoking status at recruitment (Cursmoke) is based on a 
comparison of models l and 2. Note that as the value of Linc ( Lmode1 2 ) is negative, 
minus becomes a plus in the calculation. 

LRS -2 X ( Lexc - Linc) = -2 X ( Lmodel I - Lmodel 2 ) 
-2 x (-1 206.985 + 1 1 95 .5 1 3 ) = 22.944 

This is x2 with d . f. = number of additional parameters in the inclusive model 
= 2 - l = l . 
The corresponding P-value, derived from the x2 distribution on 1 degree of 

freedom, equals 0.00000 1 7 . There is thus strong evidence of an association between 

Table 29.2 Log l ikel ihood values obtained from different Poisson regression models fitted to data 

from the Caerphilly cohort study, as described in Chapter 24. 

Model Exposure(s) in model No. of parameters Log l ikel ihood 

None (Constant only model) 1 Lmodel l = -1 206.985 
2 Cursmoke (Yes/No) 2 Lmodel 2 = -1 1 95 .513  
3 Socclass (6 groups) 6 Lmodel 3 = - 1 201 . 002 
4 Cursmoke & Socclass 7 Lmodel 4 = -1 1 9 1 . 1 1 9  
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current smoking and rate of myocardial infarction . The equivalent ::: statistic is 
z = v'22.944 = 4. 790. This is similar to the corresponding Wald z statistic value of 
4.680, given in the output in Table 24.5 .  

Hypothesis test for a categorical exposure with more than one  parameter 

When an exposure variable has more than two categories, its effect is modelled by 
introducing indicator variables corresponding to each of the non-baseline categor
ies (as explained in Section 1 9 .4). This is the case for Socclass, the men's social 
class at the start of the study. It has six categories, I = 1 (most afnuent) , II = 2, 
I I I  non-manual = 3 ,  I I I  manual = 4, IV = 5,  V = 6 (most deprived) . Model 3 
therefore has six parameters: 
1 Constant: the rate of myocardial infarction in the baseline group, chosen to be 
I I I non-manual as more than half the men were in this group, and 

2 Socclass: five rate ratios comparing each of the other social class groups with 
the basel ine group. 

To test the nul l hypothesis that social class has no effect on the rate of myocardial 
infarction, we compare the log likel ihoods obtained in models I and 3. The 
l ikel ihood ratio test statistic is 

LRS = -2 X ( Lexc - Linc ) = -2 X ( Lmodel I - Lmodel 3 ) 

= -2 x (- 1 206.985 + 1 20 1 .002) = 1 1 .966 

d.f . = number of additional parameters in the inclusive model = 6 - 1 = 5 

p = 0.035 

Because the effect of social class was modelled with five parameters, the P-value 
corresponding to this LRS is derived from the x2 distribution with 5 degrees of 
freedom. I t  equals 0.035 .  There is thus some evidence of an association between 
social class and rates of myocardial infarction. An alternative way to examine the 
effect of social class would be to carry out a test for linear trend, as was done in 
Example 24.2. Investigation of linear effects is discussed in detail in Section 29.6.  
As mentioned above, i t is also possible to derive a P-value from a multi

parameter version of the Wald test . This multi-parameter version is a x2 test 
with the same number of degrees of freedom as the l ikelihood ratio test . I n this 
example the Wald statistic is x2 = 1 0 .25 with d .f. = 5 .  The corresponding P-value 
is 0.069, higher than that obtained from the l ikelihood ratio test. 

Hypothesis tests in  multivariable models 

Models 2 and 3 in th.is example are univariable models, in which we exam.ined the 
crude or unadjusted effects of a single exposure variable, namely the effects of 
smoking and of social class. We now consider the multivariable model i ncluding 
both smoking and social class. This is number 4 i n Table 29.2. As previously 
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explained in Chapter 24, the effects in this model should be interpreted as the 
effect of smoking controlled for social class and the effect of social class controlled 
for smoking. To test the null hypothesis that there is no effect of social class after 
controll ing for smoking, we compare: 
1 the log l ikelihood of model 2, which includes only smoking, with 
2 the log likelihood of model 4 which also includes social class, with the addition 
corresponding to the effect of social class controlled for smoking. 

The likelihood ratio test statistic is: 

LRS = -2 X ( Lcxc - Linc ) = -2 X ( Lmodcl 2 - Lmodel 4) 
= -2 x (- 1 1 95 .5 1 3  + 1 1 9 1 . 1 1 9) = 8.788 

d.f . = number of additional parameters in the inclusive model = 7 - 2 = 5 
P = 0. 1 1 8 

There is therefore no good evidence for an assoc1at1on between social class 
and rates of myocardia l infarction, other than that which acts through smoking. 
However, we should be aware that for an ordered categorical variable 
such as social class a more powerful approach may be to derive a test for trend 
by including social class as a linear effect in the model, rather than as a 
categorical variable. Modelling l inear effects is discussed in detail in Section 
29.6. 

2 9 . 5  I N V E S T I G A T I N G  I N T E R ACTI O N  ( E F F E CT M O D I F I C AT I O N )  I N  
R E G R E S S I O N  M O D E L S 

Interaction was introduced in Section 1 8 .5 , where we explained that there is an 
interaction between the effects of two exposures i f the effect of one exposure varies 
according to the level of the other exposure. For example, the protective effect of 
breastfeeding against infectious diseases in early infancy is more pronounced 
among infants living in poor environmental conditions than among those living 
in areas with adequate water supply and sanitation facil ities. We also explained 
that an alternative term for interaction is effect modification. In this example, we 
can think of this as the quality of environmental conditions modifying the effect of 
breastfeeding. Finally, we noted that the most flexible approach to examine 
interaction is to use regression models, but that when we are using Mantel
Haenszel methods to control for confounding an alternative is to use a x2 test 
for effect modification, commonly called a x2 test of heterogeneity . Interaction, 
effect modification and heterogeneity are three different ways of describing exactly 
the same thing. 
We have also seen that regression models including the effect of two or more 

exposures make the assumption that there is no interaction between the exposures. 
We now describe how to test this assumption by introducing interaction terms into 
the regression model. 
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Example 29.2 
We wil l explain this in the context of the onchocerciasis dataset used throughout 
Chapters 1 9  and 20, where logistic regression was used to examine the effects of 
area of residence ( forest or savannah) and of age group on the odds of rnicro
filarial (mf ) infection. We found strong associations of both area of residence and 
of age group with the odds of mf infection. We will do three things : 
1 Remind ourselves of the results of the standard logistic regression model in
cluding both area and age group, which assumes that is there is no interaction 
between the two. In other words, it assumes that the effect of area is the same in 
each of the four age groups, and (correspondingly ) that the effect of age is the 
same in the each of the two areas, and that any observed differences are due to 
sampling variation. Unless you are already familiar with how such models 
work, we strongly suggest that you read Section 20.2 where this is explained 
in detail , before continuing with this section. 

2 We will then describe how to specify a regression model incorporating an 
interaction between the effects of area and age group, and how to interpret 
the regression output from such a model. 

3 We will then calculate a l ikelihood ratio statistic using the log l ikelihoods of 
these two models to test the null hypothesis that there is no interaction between 
the effects of area and age group. 

Model with two exposures and no interaction 

Table 29.3 summarizes the results from the logistic regression model for 
mf infection including both area and age group, described in Section 20.2 . Part 
(a ) of the table shows the set of equations for the eight subgroups of the data 
that define the model in terms of its parameters. Note that the exposure effects 
represent odds ratios, and that they are multiplicative, since logistic regression 
models the log odds. The eight subgroups can be divided into four different 
types: 
1 The baseline subgroup, consisting of those in the baseline groups of both area 
and age, namely those aged 5-9 years living in a savannah area. This is repre
sented by the Baseli ne parameter in the model. 

2 One subgroup consisting of those in the baseline group for age, but not for area, 
namely those aged 5-9 years l iving in a rainforest area. This subgroup is 
'exposed to area but not to age' .  I ts relative odds of mf infection compared to 
the basel ine is modelled by the Area parameter. 

3 Three subgroups corresponding to those in each of the three non-baseline age 
groups, but who are in the baseline group for area, namely those l iving in 
savannah areas aged I 0- 1 9 years, 20-39 years, or 40 years or more. These 
subgroups are 'exposed to age but not area' . Their relative odds of n�f' infection 
compared to the baseline are modelled by the three age group parameters, 
Agegrp( l ) , Agegrp(2) and Agegrp(3 ) , respectively. 
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4 Three subgroups corresponding to those in each of the three non-baseline age 
groups who are also in the non-baseline group for area, namely those living in 
rainforest areas aged 1 0- 1 9  years, 20-39 years, or 40 years or more. These 
subgroups are 'exposed to both area and age' . If we assume that there is no 
interaction between the two exposures, the relative odds of mf infection in these 
three subgroups compared to the basel ine are modelled by multiplying together 
the Area parameter and the relevant age group parameter. This gives Area 
x Agegrp( l ) , Area x Agegrp(2) and Area x Agegrp(3 ) , respectively. 

The model for the odds of mf infection in the eight subgroups therefore contains 
just five parameters. This is made possible by the assumption of no interaction. 
The parameter estimates are shown in part (b) of Table 29.3 .  Part (c) shows the 
values obtained when these estimates are inserted into the equations in part (a) to 
give estimated values of the odds of n�f infection according to area and age group. 
The observed odds of mf infection in each group are also shown. 

Model incorporating an interaction between the two exposures 

We now describe how to specify an alternative regression model incorporating an 
interaction between the effects of the two exposures. We no longer assume that the 

Table 29.3 Results from the logistic regression model for mf infection, including both area of residence and age 

group, assuming no interaction between the effects of area and age group. 

(a) Odds of mf infection by area and age group, expressed in terms of the parameters of the logistic regression 

model: Odds = Baseline x Area x Age group. 

Odds of mf i nfection 

Age group Savannah areas (Unexposed) Rainforest areas (Exposed) 

0 {5-9 years) 

1 (1 0-1 9 years) 

2 (20-39 years) 

3 (2'. 40 years) 

Baseline 

Baseline x Agegrp(1 )  

Baseline x Agegrp(2) 

Baseline x Agegrp(3) 

(b) Parameter estimates obtained by fitting the model. 

Baseline Area 

Odds ratio 0.1 47 3.083 

Agegrp(1 )  

2.599 

Baseline x Area 

Baseline x Area x Agegrp(1 ) 

Baseline x Area x Agegrp(2) 

Baseline x Area x Agegrp(3) 

Agegrp(2) Agegrp(3) 

9.765 1 7.64 

(c) Odds of mf infection by area and age group, as estimated from the logistic regression model, and as observed. 

Savannah areas: odds of mf infection 

Age group Estimated Observed 

0 (5-9 years) 0.1 47 0.208 

1 (1 0-1 9 years) 0 . 1 47 x 2 .599 = 0.382 0.440 

2 (20-39 years) 0 . 147 x 9.765 = 1 .435 1 .447 

3 (2'. 40 years) 0 . 1 47 x 1 7.64 = 2 .593 2.1 82 

Rainforest areas: odds of mf infection 

Estimated 

0 . 147 x 3 .083 = 0.453 

0 . 1 47 x 3 .083 x 2 .599 = 1 . 1 78 

0 . 1 47 x 3 .083 x 9. 765 = 4.426 

0 . 1 47 x 3.083 x 1 7 .64 = 7 .993 

Observed 

0.380 

1 .1 1 6  
4.400 

1 0.32 
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relative odds of n�f infection in the subgroups 'exposed to both age and area' can be 
model led by mult iplying the area and age effects together. Instead we introduce 
extra parameters, called interaction parameters, as shown in Table 29.4(a) .  These 
allow the effect of area to be different in the four age groups and, correspondingly, 
the effects of age to be different in the two areas. An interaction parameter is 
denoted by the exposure parameters for the subgroup written with a full stop 
between them. The three interaction parameters in this example are denoted 
Area .Agegrp( l ) , Area.Agegrp(2) and Area .Agegrp( 3) .  

This  new model is fitted using seven indicator variables as shown in Box 29. 1 .  
The parameter estimates for this model are shown in Table 29 .4(b) .  Table 29.4(c) 
shows the values obtained when these are inserted into the equations in part (a) .  
Note that :  
1 Since this model has eight parameters, the same as the number of area x age 

subgroups, there is an exact agreement between the estimated odds of nefinfection 
in each subgroup and the observed odds, as shown in Tables 29 .3 (c) and 20.3 .  

2 Including interaction terms leads to different estimates of the baseline, area and 
age group parameters than those obtained in the model assuming no inter
act ion .  It is important to realize that the interpretation of the area and age 
group parameters is also d i fferent .  

• The Area parameter estimate ( 1 . 8275) is the odds ratio for area in the 
baseline age group .  In the model assuming no interaction, the Area param
eter estimate ( 3 .083) is a weighted average of the odds ratios for area in the 
four age groups and is interpreted as the odds ratio for area after control
l ing for age group. 

• Similarly, the age group parameter estimates represent the effect of age in 
the baseline area group, in other words the effect among those l iving in 
savannah areas. 

3 The estimates for the interaction parameters are all greater than one. This 
corresponds to a synergistic effect between area and each of the age groups, 
with the combined effect more than simply the combination of the separate 
effects. A value of one for an interaction term is equivalent to no interaction 
effect .  A value less than one would mean that the combined effect of both 
exposures is less than the combination of their separate effects. 

4 The interaction parameters allow the area effect to be d i fferent in the four age 
groups. They can be used to calculate age-specific area odds rat ios as fol lows: 

• The Area parameter estimate equals 1 . 8275, and is the area odds ratio 
(comparing those l iving in rainforest areas with those living in  savannah 
areas) in the baseline age group ( 5-9 years). 

• Multiplying the Area parameter estimate by the interaction parameter 
estimate Area .Agegrp( l )  gives the odds ratio for area in age group I ( I 0-
1 9 years): 

OR for area in age group = Area x Area .Agegrp( l )  

= 1 . 8275 x 1 . 3878 = 2 .5362 
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Table 29.4 Logistic regression model for mf infection, including both area of residence and age group, and 

incorporating an interadion between their effects. 

(a) Odds of mf infection by area and age group, expressed in terms of the parameters of the logistic regression 

model, with the interaction parameters shown in bold: Odds = Baseline x Area x Agegroup x Area.Agegroup 

Age group 

O (5-9 years) 

1 (1 0-1 9 years) 

2 (20-39 years) 

3 (::'.:40 years) 

Savannah areas (Unexposed) 

Baseline 

Baseline x Agegrp(l )  

Baseline x Agegrp(2) 

Baseline x Agegrp(3) 

Odds of mf infection 

Rainforest areas (Exposed) 

Baseline x Area 

Baseline x Area x Agegrp( l )  x Area.Agegrp(1 )  
Baseline x Area x Agegrp(2) x Area.Agegrp(2) 
Baseline x Area x Agegrp(3 )  x Area.Agegrp(3) 

(b) Computer output showing the results from fitting the model (interaction parameters shown in  bold). 

Odds ratio z P > lzl 95 % Cl 

Area.Agegrp(1 )  1 .3878 0.708 0.479 0.560 to 3.439 
Area.Agegrp(2) 1 .6638 1 .227 0.220 0.738 to 3.751 
Area.Agegrp(3) 2.5881 2 . 1 7 1  0.030 1 .097 to 6 . 107 
Area 1 .8275 1 .730 0.084 0.923 to 3.61 9 

Agegrp(l ) 2 . 1 1 75 1 .998 0.046 1 .01 5 to 4.420 

Agegrp(2) 6.9639 6.284 0.000 3 .802 to 1 2 .  76 

Agegrp(3) 1 0.500 7.362 0.000 5.6 1 4  to 1 9.64 

Constant (Baseline) 0.2078 -5.72 0.000 0.1 21 to 0.356 

(c) Odds of mf i nfection by area and age group, as estimated from the logistic regression model, with the 

interaction parameters shown in bold. 

Age group 

0 (5-9 years) 

1 ( 1 0-1 9 years) 

2 (20-39 years) 

3 (::'.:40 years) 

Savannah areas 

0.2078 

0.2078 x 2 . 1 1 75 = 0.440 

0.2078 x 6.9639 = 1 .447 

0.2078 x 1 0.500 = 2 . 1 82 

Odds of mf infection 

Rainforest areas 

0.2078 x 1 .8275 = 0.380 

0.2078 x 1 .8275 x 2 . 1 1 75 x 1 .3878 = 1 . 1 1 6  

0.2078 x 1 .8275 x 6.9639 x 1 .6638 = 4.400 

0.2078 x 1 .8275 x 1 0.500 x 2 .5881 = 1 0.32 

Similarly, 

and 

OR for area in age group 2 = Area x Area.Agegrp(2) 

= 1 . 8275 x 1 . 6638 = 3 .0406 

OR for area in age group 3 = Area x Area .Agegrp(3)  

= 1 . 8275 x 2 .58 8 1  = 4.7300 

These four age-group-specific area odds ratios are the same as those shown in 
Tables 20.3 and 20.4. 
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5 In exactly the same way, the interaction parameters can be used to calculate 
area-specific age group odds ratios. For example: 

OR for age group 1 in rainforest areas = Agegrp( l )  x Area .Agegrp(l ) 

= 2 . 1 1 75 x 1 . 3878 = 2 .9386 

6 An alternative expression of these same relationships is to note that the in ter
action parameter Area.Agegrp( 1 )  is equal to the ratio of the odds ratios for area 
in age group I and age group 0, presented in Tables 20.3 and 20.4. For example: 

OR for area in age group 1 2 .5362 
1 3878 Area.Ao-eo-rp( l )  = . = -- = . "' "' OR for area 111 age group 0 1 . 8275 

If there is no interaction then the area odds rat ios are the same in each age 
group and the interaction parameter equals I .  

7 Alternatively, we can express the interaction parameter Area .Agegrp( l )  as the 
ratio of the odds rat ios for age group 1 (compared to age group 0) ,  in area I and 
area 0: 

OR for age group 1 in  area I = 2.9386 = 1 3878 Area.Agegrp( l )  = OR for age group I in area 0 2 . 1 1 75 
· 

(The odds ratios for age group 1 were calculated using the raw data presented in 
Table 20 .3) .  

8 The other in teraction parameter estimates al l have similar interpretations: for 
example the estimate for Area .Agegrp(2) equals the ratio of the area odds ratios 
in age group 2 and age group 0,  and equivalently it equals the ratio of the odds 
rat ios for age group 2 (compared to age group 0) in area 1 and area 0 .  

9 For a model al lowing for interaction between two binary exposure variables, the 
P-value corresponding to the interaction parameter estimate corresponds to a 
Wald test of the nul l  hypothesis that there is no interaction. When, as i n  this 
example, there is  more than one interaction parameter, the individual P-values 
corresponding to the interaction parameters are not useful in assessing the 
evidence for i nteraction: we describe how to derive the appropriate l ikelihood 
ratio test later in this section. 

Table 29 .5 summarizes the interpretation of the interaction parameters for differ
ent types of regression models. 

Table 29.5 Interpretation of interaction parameters. 

Type of regression model 

Linear 

Logistic 

Poisson 

Interpretation of interaction parameters 

Difference between mean differences 

Ratio of odds ratios 

Ratio of rate ratios 
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BOX 29.1  USING INDICATOR VARIABLES TO I NVESTIGATE I NTERACTION I N  

REGRESSION MODELS 

Values of the seven indicator variables used in a model to examine the 
in teraction between area (binary variable) and age group (4 groups) : 

Age group Area Area Age( I )  Age(2) Age(3) Area.Age( I )  Area.Age(2) Area.Age( 3 )  

5-9 years (0 )  Savannah 0 0 0 0 0 0 0 

Forest I 0 0 0 0 0 0 

1 0- 1 9  ( l )  Savannah 0 0 0 0 0 0 

Forest 0 0 l 0 0 

20-39 years (2)  Savannah 0 0 0 0 0 0 

Forest I 0 l 0 0 I 0 

2:40 years (3) Savannah 0 0 0 0 0 0 

Forest 0 0 0 0 

Likelihood ratio test for interaction 

To test the nul l  hypothesis that there is  no interaction between area and age group, 
we need to compare the log likelihoods obtained in the two models excluding and 
including the interaction parameters. These are shown in Table 29.6. The l ikeli
hood ratio test statistic is: 

LRS = -2 X ( Lcxc - L;11c ) = -2 X (- 692.407 + 689.773) = 5 .268 

d .f .  = number of additional parameters in the inclusive model = 8 - 5 = 3 

P =  0. 1 53 

Therefore this analysis provides l itt le evidence of interaction between the effects of 
area and age on the odds of microfilarial infection 

Table 29.6 Log likelihood values obtained from the logistic regression models for mf infection 

by area of residence and age group, (a) assuming no interaction, and (b) incorporating an 

interaction between the effects of area and age group. 

Model 

(a) exc 

(b) inc 

Exposure(s) in model 

Area and Agegrp 

Area, Agegrp and Area.Agegrp 

Interactions with continuous variables 

No. of parameters 

5 

8 

Log likelihood 

-692.407 

-689.773 

It is straightforward to incorporate an interaction between the effects of a continu
ous exposure variable (x) and a binary exposure variable (b, coded as 0 for 
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unexposed and I for exposed individuals) in a regression model, by mul tiplying 
the values of the two exposures together to create a new variable (x.b ) represent ing 
the interaction, as shown i n  Table 29.7 .  This new variable equals 0 for 
those unexposed to exposure b, and the value of exposure x for those exposed to 
b. The regression coefficient for x.b then corresponds to the difference between 
the slope in ind ividuals exposed to b and the slope in individuals not exposed to b, 
and the evidence for an interaction may be assessed either using the Wald 
P-value for x.b, or by omitting x.b from the model and performing a l ikel ihood 
ratio test. 

To examine interactions between two continuous exposure variables w and x, i t  
is usual to create a new variable 1 1 1. x by multiplying 1 1 1  by x .  If the regression 
coefficient for 111.x is 0 ( I  for models with exposure effects reported as ratios) then 
there is  no evidence of interaction. 

Table  29.7 Creating a variable to represent an interaction between a continuous 

and a binary exposure variable. 

Continuous exposure (x) 

x 
x 

Confounding and interaction 

Binary exposure (b) 

0 (unexposed) 

1 (exposed) 

Interaction variable (x.b) 

0 

x 

Note that confounding and interact ion may coexist . If there is clear evidence of 
an in teraction between the exposure and the confounder, i t  is no longer adequate 
to report the effect of the exposure controlled for the confounder, since 
this assumes the effect of the exposure to be the same at each level of the 
confounder. This is not the case when interaction is present .  I nstead, we 
should report separate exposure effects for each stratum of the confounder. We 
can derive these by performing a separate regression to examine the association 
between the exposure and outcome variables, for each level of the confounding 
variable. 

It i s  possible to derive stra tum-specific effects in regression models by including 
appropriate indicator variables, or combining regression coefficients as was done 
in Table 29.4(c) . This has the advantage of allowing estimation of such effects, 
controlled for the effects of other exposure variables. Confidence intervals for 
such combinations of regression coefficients need to take into account the covar
iance (a measure of the association) between the individual regression coefficients: 
some statistical packages provide commands to combine regression coefficients 
and derive corresponding confidence intervals. 

An advantage of Mantel-Haenszel methods is that because the stra tum-specific 
exposure e ffects tend to be presented in computer output, we are encouraged to 
look for evidence of interaction. In regression models we have to fit interaction 
terms expl icitly to do this .  
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Regression models with more than two variables 

The power of regression models is that, providing we make the simplifying assump
tion of no interactions, they al low us to examine the joint ( simultaneous) effects of a 
number of exposure variables. For example, suppose we had four exposure vari
ables, with 2 ,  3 ,  4 and 5 levels respectively. The number of subgroups defined by 
different combinations of these exposure groups would be 2 x 3 x 4 x 5 = 1 20 .  
Mantel-Haenszel methods to adjust for confounding would need to stratify by al l  
these 1 20 subgroups. Similarly, a regression model that included al l  the interactions 
between these four exposures would also have 1 20 parameters. However, a regres
sion model that assumes no interaction between any of the exposures would contain 
only 1 1  parameters, one for the baseline (constant) term plus 1 ,  2 ,  3 and 4 param
eters for each of the four exposure variables, since (k - I )  parameters are needed for 
an exposure with k levels. Interactions between confounding variables are often 
omitted from regression models: this is discussed in more detail in Chapter 38 .  

Increasing power in  tests for interaction 

The interpretation of tests for interaction is  difficult .  As d iscussed in more detail in 
Sections 35 .4 and 38 .6, tests for interaction usually have loiv poiver, so that the 
absence of strong evidence that interaction is present does not imply that inter
action is absent .  

A further problem, in addition to that of low power, occurs in  regression models 
with binary or time-to-event outcomes, when some subgroups contain no individ
uals who experienced the outcome event .  If this is the case, then interaction 
parameters for that subgroup cannot be estimated, and statistical computer 
packages may then drop all individuals in such subgroups from the analysis. 
This means that the model including the in teractions is  not d irectly comparable 
with the one assumjng no interaction. 

A solution to both of these problems is to combine exposure groups, so that the 
interaction i ntroduces only a smal l  number of extra parameters. For example, to 
investigate possible interactions between area and age we might first combine age 
groups to create a binary age group variable, separating those aged 0 to 1 9  years 
from those aged 20 years or more. Note that it is perfectly permissible to examine 
interactions using indicator variables based on binary variables, while contro l l ing 
for the exposure effects based on the original (ungrouped) variables. 

Further advice on examining interactions is provided in  Box 1 8 . 1  on page 1 88 
and in Chapter 38 .  

2 9 . 6  I N V E S T I G AT I N G  L I N EA R  E F F E C T S  ( D O S E- R E S P O N S E  
R E LAT I O N S H I P S )  I N  R E G R E S S I O N  M O D E L S  

Exposure effects may be modelled as l inear i f  the exposure i s  either a numerical or 
an ordered categorical variable. In modell ing exposure effects as l inear, we assume 
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that the outcome increases or decreases systematically with the exposure effect, as 
depicted in Figure 29. 1 ,  panels (a) and (b). If the observed association is  as 
depicted in panel (c) of Figure 29. 1 ,  then i t  is appropriate to conclude that there 
is no l inear effect. However, i t  is  essential to be aware of the possibility that there is  
extra-linear variation in the exposure-outcome relationship. An example is  
depicted in panel (d)  of Figure 29. 1 .  Here, a regression model assuming a l inear 
effect would conclude that there was no association between the exposure and the 
outcome. This would be incorrect, because there is in fact a non-linear association: 
the outcome level first increases and then decreases with increasing exposure. 

The interpretation of l inear effects, and the methods available to examine them, 
depends on the type of outcome and regression model :  
• in l inear or mult iple regression models, the l inear effect corresponds to a constant 

increase in  the mean of the outcome per unit increase in  the exposure variable; 
• in logistic regression or conditional logistic regression models, it corresponds to a 

constant increase in the log odds per unit increase in the exposure variable; 
• in  Poisson regression models, it corresponds to a constant increase in  the log 

rate per unit increase in the exposure variable; and 

• in Cox regression models, i t  corresponds to a constant increase in the fog hazard 
per unit increase in the exposure variable. 
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Fig. 29 .1  Four possibil ities for the association between outcome and exposure. Panels (a) and (b) show, 

respectively, positive and negative l inear associations between the outcome and exposure. In panel (c) there 

is no association between the outcome and exposure; the estimated l inear effect is zero. In panel (d) the 

linear effect is also zero, but there is a non-linear association between the outcome and the exposure. 
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When exposure effects are expressed as ratio measures, the l inear effect corres
ponds to the amount by which the outcome is multiplied per unit increase in the 
exposure variable. For example, Table 1 9 . 1 1 shows that for the onchocerciasis 
data the log odds ratio for the l inear association between microfilarial infection 
and age group was 0.930, corresponding to an odds ratio of 2 .534 per unit increase 
in age group. The odds ratio comparing age group 2 with age group 0 is therefore 
2 .5342 = 6.42 1 ,  and in general the odds ratio for an increase of k age groups is 
2 .534k . 

We saw in Chapter 1 0  on linear regression that the first step in examining the 
association between a numerical outcome and a numerical exposure is  to draw a 
scatter plot. Such plots should protect us from making errors such as that depicted 
in panel (d) of Figure 29. I ,  where an assumption of a l inear effect would lead to the 
incorrect conclusion that there is no association between the exposure and outcome. 

For logistic and Poisson regression, such plots cannot be drawn without first 
grouping the exposure variable and then graphing the outcome (e.g. log odds, log 
rate) in  each group .  For example, the odds of a binary outcome for an individual 
are either 0/ 1 = 0, or 1 /0 = infinity. We cannot therefore graph the log odds for 
individuals, but we can calculate the log odds in groups (e.g. age groups) provided 
that there is at least one individual with and one without the d isease outcome in 
each group. Therefore i t  is  sensible to group numerical exposure variables into 
ordered categories in  early analyses, in  order to check for l inearity i n  the measure 
of effect. If the exposure-ou tcome association appears approximately l inear then 
the original cont inuous variable may be used in subsequent models. For example, 
Figure 1 9 .2  shows that there is an approximately l inear association between the 
log odds of microfilarial infection and age group in  the onchocerciasis data. 

I n  conditional logistic regression and Cox regression, in which exposure effects 
are calculated by comparing exposures within case-control strata or risk sets, it is 
not possible to draw such graphs of outcome against exposure, and i t  is essential 
to examine l inearity assumptions within regression models. 

Testing for a linear effect 

We test the nul l  hypothesis that there is no l inear effect i n  the usual way using a 
l ikelihood ratio test, by comparing Linc, the log l ikelihood from the model includ
ing the l inear effect (and other exposure effects of interest ) ,  with Lexc , the log 
l ikelihood from the model excluding the l inear effect. Standard regression output 
for the l inear exposure effect reports the P-value corresponding to the Wald test of 
this null hypothesis. 

Testing for departure from l inearity 

We test the null hypothesis that the exposure effect is linear by comparing the model 
assuming a l inear effect with a more general model in  which the exposure effect is 
not assumed to be l inear. We will describe two ways of doing this : 
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1 for ordered categorical exposure variables, this comparison may be with a 
model including the exposure as a categorical variable, where indicator vari
ables are used to estimate the difference in outcome, comparing each non
baseline category with the baseline; 

2 for any ordered categorical or numerical exposure variable, we may examine the 
l inearity assumption by introducing quadratic terms into the model . 

Testing l inearity for ordered categorical variables 

The null hypothesis is that the exposure effect is l inear. To test this, we derive a 
likel ihood ratio statistic by comparing: 
(a) Lexc, the log l ikelihood when the exposure effect is assumed to be l inear ( the 

null hypothesis); 
(b) Linc , the log l ikelihood of the model when we allow the exposure effect to be 

non-l inear, and which therefore includes addi tional parameters. 

Example 29.2 (continued) 
We will i l lustrate this approach by examining the l inear effect of age group in the 
onchocerciasis data. The two models are: 
(a) A logistic regression model of the odds of mf infection with age group as a 

l inear effect. This includes just two parameters, the baseline (constant) plus a 
l inear effect for age group. Their estimates were given in Table 1 9 . 1 3 . 

(b) A logistic regression model of the odds of mf' infection with age group as a 
categorical variable. This model makes no assumption about the shape of the 
relationship between age group and mf infection. I t  includes four parameters, 
the baseline and three indicator variables for comparing each of the other 
three age groups with the baseline group. The parameter estimates were given 
in  Table 1 9 . 1 1 .  

Note that model (a)  is a special case of the more general model (b) .  The log 
l ikelihood values obtained in these two models are shown in Table 29 .8 .  The 
l ikelihood ratio test statistic is: 

LRS -2 X (Lcxc - Linc ) = -2 X (-729.240 + 727.83 1 )  = 2 .8 1 8  

d . f .  number of additional parameters in  the  inclusive model = 4 - 2 = 2 

p = 0.24 

Table 29.8 Log likelihood values obtained from the logistic regression models for mf 
i nfection by area of residence and age group, (a) assuming a linear effect of age group, and 

(b) a l lowing for a non-linear effect of age group, by including indicator variables. 

Model Exposure(s) in model No. of parameters Log l i kelihood 

(a) exc Age group (l inear, see Table 1 9. 1 3) 2 -729.240 

(b) inc Agegrp (categorical, see Table 1 9. 1 1 )  4 -727.831 
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There is no evidence against the null hypothesis that the e ffect of age group is 
l inear. The l ikelihood ratio statistic has two degrees of freedom, corresponding to 
the extra number of parameters needed to include age group as a categorical 
variable compared to including i t  as a l inear effect .  

I f  the l ikel ihood ratio test does provide evidence of non-l inearity, then the 
exposure effect should be modelled using separate indicator variables for each 
non-basel ine exposure level, as in model (b) .  

Testing l inearity using quadratic exposure effects 

We will i l lustrate the second approach to testing l inearity in the context of the 
Caerphi l ly study by examining the effect of fibrinogen (a numerical exposure) on 
the rate of myocardial infarction (Ml ) .  

Example 29.3 
Fibrinogen, a factor involved in blood coagulation that has been shown to be 
associated with rates of cardiovascular disease in a number of stud ies, was meas
ured at the baseline examination in the Caerphilly study. Its d istribution is shown 
by the histogram in Figure 29 .2(a) .  An ini tial examination of the association 
between fibrinogen and rates of myocardial infarction was done by: 
• dividing the distribution into deciles (the lowest 1 0  % of fibrinogen measure

ments, the second 1 0 %  and so on; see Section 3 . 3 ) ;  
• calculating the median fibrinogen level in each of  these deciles. These were 2 .63,  

3 ,  3 .22, 3 .4, 3 .6, 3 .8 ,  4,  4 .25,  4.59 and 5 .23;  
• graphing the rate of myocardial infarction (per I 000 person-years, log scale) in 

each decile against median fibrinogen in each decile. 
The results are shown in Figure 29 .2(b) . There appears to be an approximately 
linear association between fibrinogen and the log rate of M I .  

A Poisson regression model was then fitted fo r  the l inear effect o f  fibrinogen 
(using the original, ungrouped measurement )  on rates of M I .  The results are 
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Fig. 29.2 (a) Histogram showing the distribution of fibrinogen ( 1  OOg/dL) at the basel ine examination of the 

Caerphil ly study, and (b) Ml rates (per 1 000 person-years, log scale, with 95% confidence intervals for the 

rate in  each group) for the median fibrinogen in each decile. 
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Table 29.9 Output from a Poisson regression model for the linear effect of fibrinogen on log rates of 

myocardial infarction in the Caerphilly study. 

(a) Output on log scale 

Coefficient 

Fibrinogen 

Constant 

0.467 

-6. 1 40 

(b) Output on rate ratio scale 

Rate ratio 

Fibrinogen 1 .595 

s.e. 

0.054 

0.228 

z 

z 
8.645 

-26.973 

8.645 

P > lzl 
0.000 

0.000 

P > lz l 
0.000 

95% Cl 

0.361 to 0.573 

-6.587 to -5 .694 

95% C l  

1 .435 t o  1 .773 

shown in Table 29.9 .  The regression coefficient for fibrinogen is 0 .467, 
corresponding to a rate rat io per unit increase of 1 . 595. This implies that the 
rate ratio for a three-unit increase in fibrinogen ( from 2 .5  to 5 .5 )  is  1 . 5953 = 4.057.  
This is consistent with the increase seen over this range in  Figure 29.2(b) .  

Although there is  clear evidence of a l inear (dose-response) association between 
fibrinogen and log rates of myocardial infarction, we may sti l l  wish to derive a 
formal test for extra-l inear variation. Mathematica lly, the simplest departure from 
a l inear relationship between the outcome and an exposure (x) is a quadratic 

relationship. The algebraic form of such a relationship i s :  

To examine the evidence for. a quadratic exposure effect, we create a new variable 
whose values are the squares of the exposure being examined . We then fit a 
regression model including both the exposure and the new variable (exposure 
squared) .  

Table 29. 1 0  shows the Poisson regression output for the model including 
the l inear effect of fibrinogen, and fibrinogen2 . There is only weak evidence 
(Wald P-value = 0 .09 1 )  for a quadratic effect, so it would be reasonable 
to conclude that the effect of fibrinogen on log rates of Mr is approximately 
l inear. The fact that the regression coefficient for fibrinogen2 is less than O 
( rate ratio < 1 )  implies that the effect of fibrinogen decreases as fibrinogen in
creases. 

Because the l inear and quadratic effects are sometimes collinear ( see Section 
29.7), i t  is  preferable to examine the evidence for non-linearity using a l ikel ihood 
ratio test comparing the models including and excluding the quadrat ic effect .  
When quadratic exposure effects are included in a model, we should not  attempt 
to interpret the l inear effect alone. In  particular, the Wald P-val ue of0 .002 for the 
linear effect in Table 29. 1 0  should not be interpreted as testing the null hypothesis 
that there is no l inear effect of fibrinogen. 
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Table 29. 1 0  Output from a Poisson regression model for the quadratic effect of fibrinogen on log 

rates of myocardial infarction in the Caerphilly study. 

(a) Output on log scale 

Coefficient s.e. z P > lzl 95% Cl 

Fibrinogen 1 .038 0.338 3.073 0.002 0.376 to 1 .700 

Fibrinogen2 -0.062 0.037 -1 .688 0.091 -0. 134 to 0.01 0 

Constant -7.383 0.757 -9.750 0.000 -8.868 to -5.899 

(b) Output on rate ratio scale 

Rate ratio z P > lzl 95% Cl 

Fibrinogen 2.824 3.073 0.002 1 .457 to 5.475 

Fibrinogen2 0.940 -1 .688 0.091 0.874 to 1 .0 1 0  

Dose-response and  unexposed groups 

When examining dose-response relationships we should d istinguish between the 
exposed group with the minimum exposure, and the unexposed group. For 
example, i t  may be that smokers in general have a higher risk of some disease 
than non-smokers. In addition, there may be an increasing risk of disease with 
increasing tobacco consumption. However, including the non-smokers with the 
smokers may bias our estimate of the dose-response relationship ( l inear effect) 
among smokers .  This is i l lustrated in Figure 29. 3 .  There are two possible ways to 
restrict estimation of the l inear effect to exposed individuals: 
1 Exclude the unexposed group, then estimate the l inear effect among the ex

posed . 
2 Include an ind icator variable for exposed/unexposed together with l inear effect 

of the exposure variable. The regression coefficient for the exposure will then 
estimate the l inear effect among the exposed, while the regression coefficient for 
the indicator variable will estimate the difference between the outcome in the 
unexposed group and that projected by the l inear effect in  the exposed (dotted 
l ine in Figure 29 .3) .  

Remarks on l inear effects 

1 I t  makes sense to model an exposure effect as l inear i f  it is plausible that the 
outcome will increase (or decrease) systematically with the level of exposure. 
Such an exposure effect is  known as a dose-response relationship, or trend. 

2 A test for trend (see Section 1 7 .5 )  is an approximation (based on a score test) to 
a l ikelihood ratio test of the null hypothesis that the regression coefficient for a 
l inear effect is zero. 

3 The existence of a dose-response relationship may provide more convincing 
evidence of a causal effect of exposure than a simple comparison of exposed 
with unexposed subjects .  
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F ig .  29.3 Possible association between cigarette consumption and the log odds of a disease outcome. 

There is a larger difference between exposed (smokers) and unexposed (non-smokers) than would be 

expected given the magnitude of the dose-response relationship among the smokers. 

4 Est imating a l inear effect will often be the most po111e1ful way to detect an 
association with an ordered exposure variable. This is because we only estimate 
one parameter, rather than a parameter for each non-basel ine level .  However, it 
is essential that this simplifying assumption, that an exposure effect may be 
modelled as a l inear effect, be checked. 

5 Modelling an exposure effect as l inear will only be valid if the exposure is 
ordered categorical or numerical .  Ideally, the category values should reflect 
the degree of exposure. For example, if the exposure was level of blood pressure 
and the four  categories of exposure were obtained by grouping the blood 
pressures, then the category values could be the midpoints or mean of blood 
pressure in each of the four groups. In  the absence of any genuine measurement 
(for instance when we model the effects of social class) it is usual to assign scores 
0, 1 ,2,3,4 . . .  to the various exposure levels. 

2 9 . 7  C O L L I N EA R I T Y  

When two exposure variables are highly correlated we say that they are colJinear. 

Collinearity can cause problems in fitt ing and interpreting regression 
models, because inclusion of two highly correlated exposure variables in a regres
sion model can give the impression that neither is associated with the 
outcome, even when each exposure is strongly associated ( individually) with 
the outcome. 
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We will i l lustrate this by exammmg the regression of height ( the outcome 
variable) and age (the exposure variable) from the study of 636 children l iving in  
Lima, Peru (see Chapter 1 1 ), in  the presence of an artificially constructed variable 
neivage. Neivage has been computer-generated to be collinear with age, by adding a 
random 'error' to each age, with the standard deviation of this random error made 
equal to I year. This has led to a correlation of 0 .57 between age and neivage, 
which is high but not very high. 

The correlation between height and age was 0 .59, and the regression coefficient 
was 5 . 1 5  cm/year (s.e. = 0.28). A regression of height on neivage alone gives a 
regression coefficient of 1 .6 1 .  This is much smaller than the regression coefficient 
for age ( 5 . 1 5 ) because the addition of a random error component tends to reduce 
the regression coefficient (see Chapter 36 for a more detailed discussion of this 
issue) .  

When both age and neivage are included in the model, the regression coefficient 
for age i s  slightly increased (5 .3 1 )  compared to the value for the model with age 
alone (5 . 1 5 ) ,  while the regression coefficient for 11e11 1age i s  slightly less than zero. 
These resu lts are shown in the first row of Table 29. 1 1 .  Thus, the joint regression 
has correctly identified strong evidence of an association between height and age, 
taking neivage into account, and no evidence of an association between height and 
neivage, taking age into account. In  this artificially created example, the regression 
has correctly ident ified the joint information of age and neivage being contained in  
age, since in essence neivage i s  a less accurate measure of age. This level of 
coll inearity in this particular example has not caused a problem. 

We will now demonstrate how problems can occur with increasing col l inearity 
between age and newage by decreasing the standard deviation of the random error 
that is added to variable age to create variable neivage. The second row of Table 
29. l l shows that when this standard deviation is decreased to O. l the correlation 
between age and newage is very high (0.9904). The coefficient from the regression 
of height on newage alone is  5.06: close to the regression coefficient for age alone. 
When both age and newage are included in the model, there is  a substantial 
increase in the regression coefficient for age, while the regression coefficient for 

Table 29. 1 1  Demonstration of the effect of collinearity, using data from the study of lung disease in children in 

Lima, Peru. Variable newage is variable age plus a random error whose standard deviation is given in the first 

column in the table. 

Regression of height Regression of height 

s.d. of Correlation 
on newage on age and newage 

random between age Coefficient (s.e.) Coefficient (s.e.) Coefficient (s.e.) Sum of 

error and newage for newage for age for newage coefficients 

0.57 1 .61 (0.20) 5.31 (0.33) - 0.1 7 (0.20) 5. 1 6  

0 . 1  0.9904 5.06 (0.28) 6.81 (2.00) - 1 .66 (1 .99) 5. 1 5  

0.01 0.9999 5.1 6 (0.28) 21 .76 (1 9.94) -1 6.62 (1 9.94) 5 . 14  
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ne1vage is clearly negative .  The important thing to notice is that there is an even 
more dramatic increase in the standard errors of both regression coefficients. 

When the standard deviation of the random error is  reduced to 0 .0 1 ,  the 
correlation between age and ne1vage is extremely high (0 .9999, third row of 
Table 29 . 1 1  ) . The regression coefficient for newage alone is almost identical to 
that for age, as would be expected because the error now contained in 11e1 vage as a 
measure of age is very small .  Inclusion of both variables in the model has a 
dramatic effect: the regression coefficient for age is greatly increased to 2 1 . 76, 
while the regression coefficient for 11e1vage is reduced to - 1 6.62. The standard 
error of each regression coefficient is large ( 1 9  .94). This joint model could lead to 
the erroneous conclusion that neither age nor ne1vage is associated with the 
outcome variable, height. 

The final column of the table shows that although the regression coefficients for 
age and newage change dramatically as the collinearity between them increases, 
the sum of the two coefficients remains approximately constant, and is the same as 
the regression coefficient for age alone. This suggests a solution to the problem . It 
is not possible simultaneously to estimate the effects of both age and newage, 
because each has the same association with height .  However we can estimate the 
association of the outcome with the sum (or, equivalently, the average) of the two 
variables. Alternatively, we can simply choose one of the variables for inclusion in 
our model and exclude the other one. 

In conclusion, this example demonstrates that including two strongly coll inear 
exposure variables in  a regression model has the potential to lead to the erroneous 
conclusion that neither is associated with the outcome variable. This occurs when 
coll inearity is  high enough to lead to dramatic increases in the standard errors of 
the regression coefficients. Comparing the standard errors from the single expos
ure models with the joint exposure model can identify whether this problem is 
occurring. When i t  does occur, it is not possible to estimate the effect of each 
exposure controll ing for the other in a regression model .  

2 9 . 8  D E C I D I N G  W H I C H  E X P O S U R E  V A R I A B L E S  TO I N C L U D E  IN A 
R E G R E S S I O N  M O D E L  

A key challenge i n  analysing studies that have data on a large number of exposure 
variables is how to decide which of these variables to include and which to exclude 
from a particular regression model, since it is  usually unwise or impossible to 
include all of them in the same model. A rough guide is that there should be at 
least ten t imes as many observations ( individuals) as exposure variables in a 
regression model : for  example, a model which includes ten variables should be 
based on data from at least J OO ind ividuals. Note that each separate indicator 
variable counts as a separate variable. 

Two important considerations will influence how the choice of exposure vari
ables is  made: 
1 Are you using mult iple l inear regression, or a d i fferent generalized l inear model? 
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2 Is the main aim of the model to estimate the effect of a particular exposure as 
accurately as possible, to predict the outcome based on the values of a number 
of exposures, or to develop an explanatory model of those exposures that have 
an influence on the outcome? 

Impl ication of type of regression model 

For multiple linear regression, you should aim to include all exposure variables 
that are clearly associated with the outcome when estimating the effect of a 
particular exposure, whether or not they are confounders (with the exception that 
variables on the causal pathway between the exposure of interest and the outcome 
should not be included; see Section 1 8 .2) .  Doing this will reduce the residual sum 
of squares (see Chapter 1 0) and so will increase the precision of the estimated 
effect of the main exposure, and the power of the associated hypothesis test .  
However, this is not the case with other generalized linear models. For example, 
inclusion of additional variables in logistic regression models will tend to increase 
the standard error of the exposure effect estimate. 

Estimating the effect of a particular exposure 

When estimating the effect of a particular exposure, we have seen that it is 
importan t  to include potential confounding variables in the regression model, 
and that fai lure to do so will lead to a biased estimate of the effect. In  considering 
which potential confounders should be included, i t  is essential that careful consid
eration be given to hierarchical relationships between exposures and confounders, 
as well as to statistical associations in the data. This is explained in detail in  
Chapter 38  on strategies for data analysis. 

Deriving a regression model to predict the outcome 

Different considerations apply when the main purpose of the analysis is  to derive a 
regression model that can be used to predict future values of the outcome variable. 
For example, this approach has been used in developing countries to attempt to 
ident ify whether a pregnant woman may be at risk of obstetric difficulties, based 
on factors such as social class, previous pregnancy outcomes, and pre-pregnancy 
weight and height .  

The a im  in developing a predictive model is  to identify a set of exposure 
variables that give a good prediction of the outcome. The emphasis is no longer 
on assessing the importance of a particular exposure or on understanding the 
aetiology of the outcome. However, a good starting point is to include those 
exposure variables that are known from other studies to be strongly associated 
with the outcome. In addition, it may be helpful to use an automated procedure to 
identify which (of what are often a large number of additional variables) might be 
included in the model. Such procedures are usually based on the magni tude of the 
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P-value for each variable and are known as stepwise selection procedures. For 
example, a typical stepwise procedure might be: 
I Fit a model including all exposure variables. Now omit each variable in turn, 

and record the P-value for each l ikelihood ratio test .  The variable with the 
h ighest P-val ue is omit ted from the next step of the procedure. 

2 Fit the model including all variables except that omitted in step ( 1 ) . Now 
proceed as in  step ( 1 )  to select the next variable to be omitted. 

3 Continue until the P-value for omission of each remaining variable is less than a 
chosen threshold (e.g. 0 .2) .  

4 Now consider adding, in turn,  each of the variables omitted in  steps ( 1 )  to ( 3 ) .  
Add the  variable with the  smal lest P-value, providing this is less than 0 .2 .  

5 Continue unti l no more variables with a P-value of < 0 .2  can be  added . The 
result ing model is  the final model to be used for prediction.  

Of course, different versions of such stepwise procedures can be chosen. Such 
procedures may appear attractive, because they seem to provide an objective way 
of choosing the best possible model . However they have serious disadvantages, 
which are summarized in Box 29.2 .  If it is necessary to use a stepwise selection 
procedure, then it is advisable to use a higher P-value threshold, such as 0.2 rather 
than 0.05 (the traditional threshold for statistical significance) .  

BOX 29.2 PROBLEMS WITH STEPWISE VARIABLE SELECTION I N  REGRESSION 

MODELS 

I The major problem with stepwise regression is that the derived model wil l  
give an over-optimist ic impression. The P-values for the selected variables 
will be too small, confidence intervals will be too narrow and, in the case 
of mul tiple regression, the proportion of variance explained ( R2) will be 
too high. This is  because they do not reflect the fact that the model was 
selected using a stepwise procedure. The higher the original number of 
exposure variables from which the final model was selected, the higher the 
chance of selecting variables with chance associations with the outcome 
and thus the worse this problem will be. 

2 The regression coefficients will be too large (too far away from their null  
values). This means that the performance of the model in  predicting future 
values of the outcome will be less good than we might expect. 

3 Computer simulations have shown minor changes in the data may lead to 
important changes in the variables selected for the final  model . 

4 Stepwise procedures should never be used as a substitute for thinking 
about the problem. For example, are there variables that should be 
included because they are known from previous work to be associated 
with the outcome? Are there variables for which an association with the 
outcome is implausible? 
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The quality of predictions from models that have been derived using stepwise 
procedures should be evaluated using a separate dataset ( the test dataset) to that 
which was used to derive the model ( the development dataset) .  This is  for two 
reasons: 
• as explained in Box 29.2, the regression coefficients in the model wil l  tend to be 

too large; 
• the individuals for whom we wish to predict the outcome may differ, in a 

manner not captured by the variables measured, from those in the development 
dataset. 

Developing an explanatory model for the outcome 

Sometimes the focus of a study is to understand the aetiology of the outcome, and 
to ident ify those exposures or risk factors that are important influences on i t .  The 
purpose of the regression model here is halfway between that of the other two 
situations j ust described. Thus the focus is neither on identifying which con foun
ders to include for a particular risk factor, nor is i t  on ident ifying any combination 
of exposures that works, as in  the prediction scenario .  I nstead i t  is  intended to 
attach meaning to the variables chosen for inclusion in the final model . For this 
reason, we strongly recommend that the selection procedure is  based on an 
underlying conceptual framework (see Chapter 38  for more detai l ) ,  and that 
formal stepwise methods are avoided because of the problems with them described 
in Box 29.2. 
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All the statistical methods presented so far have been based on assuming a specific 
probabil ity distribution for the outcome, or for a transformation of the outcome. 
Thus we have assumed a normal distribution for numerical outcomes, a binomial 
distribution for binary outcomes and a Poisson distribution for rates. In  this 
chapter we describe three types of methods that can be used when these assump
tions are violated. These are: 
• non-parametric methods based on ranks, which are used when we have a 

numerica l outcome variable but wish to avoid specific assumptions about i ts 
d istribution, or cannot find a transformation under which the outcome is 
approximately normal ;  

• bootstrapping, a very general technique that al lows us to derive confidence 
intervals making only very l imited assumptions about the probabil ity d istribu
tion of the outcome; 

• robust standard errors, which allow derivation of confidence intervals and 
standard errors based on the actual distribution of the outcome variable 1 11 
the dataset rather than on an assumed underlying probabil i ty distribution . 

3 0 . 2  N O N - PA R A M E T R I C  M E T H O D S  B A S E D  O N  R A N K S  

Non-parametric methods based on ranks are used to analyse a numerical outcome 
variable without assuming that it is approximately normally distributed. The key 
feature of these methods is that each value of the outcome variable is replaced by 
its rank after the variable has been sorted into ascending order of magnitude. For 
example, if  the outcome val ues were 453, I ,  5 and 39 then analyses would be based 
on the corresponding ranks of 4, I ,  2 and 3 .  

As explained in  Chapter 5 ,  the central l imi t  theorem tells us that as  the sample 
size increases the sampling distribut ion of a mean will tend to be normally 
distributed even i f  the underlying distribution is non-normal. Rank methods are 
therefore particularly useful in a small data set when there is obvious non-normal
ity that cannot be corrected by a suitable transformation, or when we do not wish 
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to transform the variable because transforming would make interpretation of the 
results harder. They are less powerful (efficient in  detecting genuine differences) 
than parametric methods, but may be more robust, in the sense that they are 
less affected by extreme observat ions. Rank methods have three main d isadvan
tages: 
1 Their primary concern has tradit ionally been significance testing, since associ

ated methods for deriving confidence l imits have been developed only recently. 
This conflicts with the emphasis in  modern medical statist ics on estimation of 
the size of differences, and the interpretation of P-values i n  the context of 
confidence intervals (see Chapter 8) .  In  particular, large P-values from rank 
order tests comparing two small samples have often been misinterpreted, i n  the 
absence of confidence intervals, as showing that there is no difference between 
two groups, when in fact the data are consistent either with no difference or 
with a substantial difference. Bootstrapping, described in Section 30 .3 ,  pro
vides a general means of deriving confidence intervals and so overcomes this 
difficulty. 

2 When sample sizes are extremely smal l ,  such as in  comparing two groups with 
three persons in each group, rank tests can never produce small P-values, even 
when the values of the outcomes in the two groups are very different from each 
other, such as l ,  2 and 3 compared with 2 1 ,  22 and 23. In contrast, the t-test 
based on the normal distribution is able to detect such a clear difference 
between groups. It wil l ,  of course, never be possible to verify the assumption 
of normal i ty in such small samples. 

3 Non-parametric methods are less easily extended to situations where we wish to 
take into account the effect of more than one exposure on the outcome. For 
these reasons the emphasis in this book is on the use of parametric methods, 
providing these are valid. 

The main rank-order methods are l isted in Table 30. 1 together with their para
metric counterparts. The most common ones, the Wilcoxon signed rank test, the 
Wilcoxon rank sum test, Spearman's rank correlation and Kendall 's tau, wil l  be 
described using examples previously analysed using parametric methods. For a 
detailed account of non-parametric methods the reader is referred to Conover 
( 1 999), Siegel and Castellan ( 1 988) or Sprent and Smeeton (2000) .  Details of 
methods to derive confidence intervals are given by Altman et al. (2000) .  

Wilcoxon signed rank test 

This is the non-parametric counterpart of the paired t-test, and corresponds to a 
test of whether the median of the differences between paired observations is zero 
in the population from which the sample is drawn. 

Example 30. 1 
We will show how to derive the Wilcoxon signed rank test using the data in Table 
30.2, which shows the number of hours of sleep obtained by l 0 patients when they 
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Table 30.1 Summary of the main rank order methods. Those described in more deta i l  in this section are shown in 

italics. 

Purpose of test 

Examine the difference between 

paired observations 

Simplified form of Wilcoxon signed 

rank test 

Examine the difference between 

two groups 

Alternatives to Wilcoxon rank sum 

test that give identical results 

Examine the difference between two or 

more groups. Gives identical results 

to Wilcoxon rank sum test when 

there are two groups 

Measure of the strength of association 

between two variables 

Alternative to Kendall's rank correlation 

that is easier to calculate. 

Method 

Wilcoxon signed rank test 

Sign test 

Wilcoxon rank sum test 

Mann-Whitney U-test 

Kendall 's 5-test 

Kruskal-Wallis one-way ana lysis 

of variance 

Kendal/' s rank correlation 
(Kendall's tau) 

Spearman's rank correlation 

Parametric counterpart 

Paired t-test 

Two-sample t-test 

Two-sample t-test 

One-way analysis of variance 

Correlation coefficient 

Correlation coefficient 

Table 30.2 Results of a placebo-controlled clinical trial to test the effectiveness of a sleeping 

drug (reproduced from Table 7.3), with ranks for use in the Wilcoxon signed rank test. 

Hours of sleep 

Patient Drug Placebo Difference Rank (ignoring sign) 

6.1 5.2 0.9 2 

2 6.0 7.9 - 1 .9 5 

3 8.2 3.9 4.3 1 0  

4 7.6 4.7 2.9 8 

5 6.5 5.3 1 .2 3 

6 5.4 7.4 -2.0 6 

7 6.9 4.2 2.7 7 
8 6.7 6.1 0.6 

9 7.4 3.8 3.6 9 

1 0  5.8 7.3 - 1 . 5  4 

took a sleeping drug  and when they took a placebo, and the differences between 
them. The test consists of five steps: 
1 Exclude any differences that are zero. Put the remaining differences in  ascending 

order of magni tude, ignoring their signs and give them ranks 1 ,  2, 3 ,  etc., as shown 
in Table 30.2 .  If any differences are equal then average their ranks.  

2 Count up the ranks of the positive differences and of the negative differences 
and denote these sums by T+ and T_ respect ively. 

T + = 2 + 1 0  + 8 + 3 + 7 + l + 9 = 40 

T_ = 5 + 6 + 4 = 1 5  
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3 If there were no difference in effectiveness between the sleeping drug and the 
placebo then the sums T+ and T_ would be similar. If there were a d ifference 
then one sum would be much smaller and one sum would be much larger than 
expected. Denote the smaller sum by T. 

T = smaller of T+ and T_ 

In  this example, T = 1 5 . 
4 The Wilcoxon signed rank test is based on assessmg whether T is smaller 

than would be expected by chance, under the null hypothesis that the median 
of the paired differences is zero. The P-value is  derived from the sampling 
distribution of T under the null hypothesis .  A range for the P-value can 
be found by comparing the value of T with the values for P = 0.05,  P = 0 .02 
and P = 0.0 I given in Table A 7 in  the Appendix. Note that the appropriate 
sample size, n, i s  the number of differences that were ranked rather than 
the total number of differences, and does not therefore include the zero differ
ences. 

n = number of non-zero differences 

In contrast to the usual situation, the smaller the value of T the smaller is the 
P-value. This is  because the null hypothesis is that T is equal to the sum of the 
ranks divided by 2, so that the smaller the value of T the more evidence there is  
against the nul l  hypothesis .  In this example, the sample size is 10 and the 5 %, 
2 % and 1 % percentage points are 8, 5 and 3 respectively. The P-val ue is 
therefore greater than 0.05, since 1 5  is greater than 8. 

It is more usual to derive the P-value using a computer: in this example 
P = 0.20 so there is no evidence against the null hypothesis, and hence no 
evidence that the sleeping drug was more effective than the placebo. 

5 To derive an approximate 95 % confidence interval for the median difference, 
we consider the averages of the n(n + 1 )/2 possible pairs of differences. The 
resulting 1 0  x 1 1 /2 = 55 possible averages for this example are shown in Table 
30 .3 .  The approximate 95 % CI is given by: 

95% CI (median difference) = yth smallest average to yth largest average 

of the n(n + 1 )/2 possible pairs of differences, where 

T is the value corresponding to the 2-sided P-value of 0.05 in Table A 7 
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Table 30.3 Fihy-five possible averages of the ten differences between patients' hours of sleep after taking 

a sleeping drug and their hours of sleep after taking a placebo. 

-2.0 - 1 .9 - 1 .5 0.6 0.9 1 .2 2 .7 2.9 3.6 4.3 

-2.0 -2 -1 .95 - 1 .75 -0.7 -0.55 -0.4 0.35 0.45 0.8 1 . 1 5  

-1 .9 - 1 .9 - 1 .7 -0.65 -0.5 -0.35 0.4 0.5 0.85 1 .2 

- 1 .5 - 1 . 5 -0.45 -0.3 -0. 1 5  0.6 0.7 1 .05 1 .4 

0.6 0.6 0.75 0.9 1 .65 1 .75 2 . 1  2.45 

0.9 0.9 1 .05 1 .8 1 .9 2.25 2 .6 

1 .2 1 .2 1 .95 2.05 2.4 2.75 

2.7 2.7 2.8 3 . 1 5 3 .5  

2 .9  2 .9  3 .25 3 .6  

3 .6  3 .6  3 .95 

4.3 4.3 

In this example, T = 3, and so the 95 % confidence interval is from the 3th 
smal lest average to the 3th largest average. These are found from Table 30.3 to 
be -0.65 and 2 .9 respect ively. 

95 % confidence interval for median difference = -0.65 to 2 .9  

Further details of the assumptions underlying the Wilcoxon signed rank test and 
the confidence interval for the median difference are given in Conover (1 999) .  

Wilcoxon rank sum test 

This is one of the non-parametric counterparts of the t-test, and is used to assess 
whether an outcome variable differs between two exposure groups. Specifically, i t  
examines whether the median difference between pairs of observations from the 
two groups is  equal to zero. I f, in addition, we assume that the d istributions of the 
outcome in the two groups are identical except that they di ffer by a constant 
amount (that is, they 'differ only in location') then the nul l  hypothesis of the test is 
that the difference between the medians of the two d istributions equals zero. 

Example 30.2 
The use of the Wilcoxon rank sum test will be described by considering the data i n  
Table 30.4, which shows the birth weights o f  children born to 1 5  non-smokers and 
14 heavy smokers. It consists of three steps: 
1 Rank the values of the outcome from both groups together in ascending order of 

magnitude, as shown in the table. I f  any of the values are equal, average their 
ranks. 

2 Add up the ranks in  the group with the smaller sample size. I f  there were no 
difference between the groups then the ranks would on average be similar. In 
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Table 30.4 Comparison of birth weights of children born to 1 5  non

smokers with those of children born to 14 heavy smokers (reproduced 

from Table 7 . 1 ), with ranks for use in the Wilcoxon rank sum test. 

Non-smokers (n = 1 5) Heavy smokers (n = 1 4) 

B irth weight (kg) Rank Birth weight (kg) Rank 

3 .99 27 3 . 1 8 7 
3.89 26 2.74 4 

3.6 1 7 .5 2.9 6 
3.73 24 3.27 9 
3 .31  1 0  3 .65t 20.5 

3.7 23 3.42 1 3  
4.08 28 3.23 8 
3.61 1 9  2 .86 5 

3.83 25 3.6 
. 

1 7.5  
3.41 1 2  3.651 20.5 
4. 1 3  29 3.69 22 
3 .36 1 1  3.53 1 5  
3 .54 1 6  2.38 2 
3 .51 1 4  2.34 
2 .71 3 

Sum = 284.5 Sum = 1 50.5 

*
Tied 1 7'11 and 1 8'11 and so ranks averaged 

1Tied 20'11 and 2 1 "  and so ranks averaged 

this case the group with the smaller sample size is the heavy smokers, and their 
ranks sum to 1 50 .5 .  If the two groups are of the same size either one may be 
picked. 

T = sum of ranks in group with smaller sample size 

3 Compare the value of Twith the values in Table AS, which is arranged somewhat 
differently to the tables for the other tests. Look up the row corresponding to the 
sample sizes of the two groups, in this case row 1 4, 1 5 . The range shown for 
P = 0 .0 l is 1 5 1  to 269:  values inside this range ( i .e .  between 1 5 1  and 269) 
correspond to P-values greater than 0.0 I .  Sums of 1 5 1  and below or 269 and 
above correspond to P-values less than 0.0 1 .  The sum of 1 50 .5 in this example is 
just below the lower l imit of 1 5 1 ,  so the P-val ue is sl ightly less than 0 .0 1 .  

As with the signed rank test, the P-value is usually derived using a computer. I n  
this case P = 0 .0094: there i s  good evidence against the nul l  hypothesis that the 
median birth weight of children born to heavy smokers is the same as the median 
birth weight of children born to non-smokers. 

Details of how to derive a confidence interval for the difference in medians 
(assuming that the two distributions differ only in location) are given by Conover 
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( ! 999) and in Altman et al. ( 2000) .  Such confidence intervals are known as 
Hodges-Lehmann estimates of sh ift. In this example, we find ( using a computer) 
that the 95 % CI is from - 0.  77 to -0.09. In Section 30.3 we see how bootstrap  
methods can also be used to provide a confidence interval for the difference 
between medians. 

Rank correlations 

We will now consider two rank order measures of the association between two 
numerical variables: Kendall 's tau and Spearman's rank correlation. The paramet
ric counterpart of these measures is the correlation coefficient, sometimes known as 
the Pearson product moment correlation, which was described in Chapter 1 0. 

Example 30.3 
We will explain these measures of association using the data in Table 30 .5 on the 
relationship between plasma volume and body weight in eight healthy men. We 
will call these two quantitative variables Y and X. The Pearson correlation 
between these was shown in Section 1 0 .3  to be 0.76.  

To calculate Spearman's rank correlation coefficient 1;: 
1 I ndependently rank the values of X and Y. 
2 Calculate the Pearson correlation between the ranks, rather than between the 

original measurements. Other formulae for the Spearman correlation are often 
quoted; these give identical results. This gives a value of 0.8 1 in this example. 

Kendall's tau (denoted by the Greek letter T) i s  derived as follows: 
I Compare the ranks of X and Y between each pa ir of men. There are n(n - I )/2 

possible pairs. The pairs of ranks for subjects i and j are said to be: 
(a) concordant if they differ in the same directions, that is if both the X and Y 

ranks of subject i are lower than the corresponding ranks of subject }, or 
both are higher. For example, the ranks of subjects 1 and 2 are concordant 

Table 30.5 Relationship between plasma volume and body weight in eight healthy 

men (reproduced from Table 1 0. 1 ), with ranks used in calculating the Spearman rank 

correlation. 

Body weight (X) Plasma volume (Y) 

Subject Value (kg) Rank Value (l itre) Rank 

1 58.0 1 2 .75 2 

2 70.0 5 2.86 4 

3 74.0 8 3.37 7 

4 63.5 3 2.76 3 
5 62.0 2 2.62 

6 70.5 6 3.49 8 
7 71 .0 7 3.05 5 
8 66.0 4 3 . 1 2  6 
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as subject 1 has a lower rank than subject 2 for both the variables. The 
pair 3 and 8 is also concordant: subject 3 has higher ranks than subject 8 
on both variables. 

(b) discordant if the comparison of the ranks of the two variables is  in 
opposite d irections. For example, the ranks of subjects 3 and 6 are 
discordant as subject 3 has a more highly ranked X value than subject 6 
but a lower ranked Y value. 

2 Count the number of concordant pairs (nc ) and the number of d iscordant pairs 
(no ) ,  and calculate T as: 

nc - no T = ----n(n - 1 )/2 

In this example, Kendall's tau (derived using a computer) is 0 .64. If all pairs are 
concordant then T = 1 ,  while if  all pairs are discordant then T = - 1 .  More 
details, including an explanation of how to deal with t ies, are given by Conover 
( 1 999). 

All three measures of correlation have values between 1 and - 1 .  Although 
Spearman's rank correlation is  better known, i ts only advantage is that it is easier 
to calculate without a computer. Kendall's tau is  the preferred rank measure, 
because its statist ical properties are better and because it is easier to interpret. 
Given two pairs of observations ( X1 , Y1 ) and (X2, Y2 ) Kendall's tau is  the 
difference between the probability that the bigger X is with the bigger Y, and the 
probabil i ty that the bigger X is with the smaller Y. 

If X and Y are each normally distributed then there is  a direct relat ionship 
between the Pearson correlation (r) and both Kendall 's T and Spearman's rank 
correlation (rs ) :  

r = sin GT) = 2sin (� rs) 
This means that Pearson correlations of 0, ± I  /2, ±0. 707 1 and ± 1 correspond to 
Kendal l  T values of O, ± 1 /3 ,  ± 1 /2 and ± 1 and to Spearman rank correlations of 
0 ,  ± 0.4826, ± 0.6902 and ± I ,  respectively. 

3 0 . 3  B O O T S T R A P P I N G  

Bootstrapping i s  a way o f  deriving confidence intervals while making only very 
l imited assumptions about the probabi l ity distribution that gave rise to the data. 
The name derives from the expression 'pull yourself up by your bootstraps', which 
means that you make progress through your own efforts; without external help. I t  
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is based on a remarkably simple idea: that if we take repeated samples from the 
data themselves, mimicking the way that the data were sampled from the popula
tion, we can use these samples to derive standard errors and confidence in tervals . 

The new samples are drawn with replacement from the original data. That is, we 
pick an observation at random from the original data, note down its value, then 
pick another observation at random from the same original data, regardless of 
which observation was picked first. This continues until we have a new dataset of 
the same size as the original one. The samples differ from each other because some 
of the original observations are picked more than once, while others are not 
picked at al l .  

Example 30.4 
We will i l lustrate this using the data on birth weight and smoking, shown in Table 
30.4. The median birth weight among the children born to the non-smokers 
was 3 . 6 1  kg, while the median among children born to the smokers was 
3 .25  kg. The difference in medians comparing smokers with non-smokers 
was therefore -0.36 kg. The P-value for the null hypothesis that the median birth 
weight is the same in  smokers and non-smokers (derived in  Section 30 .2 using the 
Wilcoxon rank sum test) was 0 .0094. The non-smokers and heavy smokers were 
recruited separately in this study, and so the bootstrap sampling procedure mimics 
this by sampling separately from the non-smokers and from the heavy smokers. 
Therefore each bootstrap sample will have 1 5  non-smokers and 1 4  heavy smokers. 

This process is  i l lustra ted, for two bootstrap samples, in Table 30 .6 .  In the fi rst 
bootstrap sample observations I ,  3, 4 and 5 were not picked, observation 2 was 
picked four t imes, observations 6 and 7 were picked once and so on.  I n  this sample 
the difference in  median birth weight was -0.48 kg, while in  the second sample the 
difference was -0.26 kg. 

We repeat this procedure a large number of times, and record the difference 
between the medians in each sample. To derive confidence intervals, a minimum of 
around I 000 bootstrap samples is needed. Figure 30. 1 is a histogram of the 
differences in medians derived from 1 000 bootstrap samples from the birth weight 
data. 

The simplest way to derive a 95 % confidence interval for the difference between 
medians is to use the percentile method and take the range within which 95 % of 
these bootstrap differences l ie, i .e .  from the 2 .51 11 percentile to the 97 .5111 percentile 
of this distribution. This gives a 95 % CI  of -0.87 to -0.0 I kg. 

Unfortunately the percenti le method, though simple, is not the most accurate 
method for deriving bootstrap confidence intervals. This has led to the develop
ment of bias corrected ( BC) and bias corrected and accelerated ( BCa) intervals, of 
which BCa intervals have been shown to have the best properties. For the birth 
weight data, use of the BC method gives a 95 % CT of -0.80 to 0 .025 kg, while the 
BCa method gives a 95 % CI of -0. 7 1  to 0 . 1 2  kg. More information about the use 
of bootstrap methods can be found in Efron and Tibsh iran i  ( l  993) and in  Davison 
and H inkley ( 1 997) .  
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Table 30.6 Two bootstrap samples, based on data on birth weights (kg) of children born to 1 5  non-smokers and 

of children born to 1 4  heavy smokers. 

Obs. no. 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

1 1  

1 2  

1 3  

1 4  

1 5  

1 6  

1 7  

1 8  

1 9  

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Original data 

Birth 

weight Smoker 

3.99 

3.89 

3.60 

3.73 

3.31 

3.70 

4.08 

3 .61 

3.83 

3.41 

4. 1 3  

3.36 

3.54 

3.51 

2.71 

3 . 1 8 

2 .74 

2.90 

3.27 

3.65 

3.42 

3.23 

2.86 

3.60 

3.65 

3.69 

3.53 

2 .38 

2.34 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Median in non-smokers = 3.61 

Median in smokers = 3.25 

Difference in medians = -0.36 

First bootstrap sample 

Original Birth 

obs. no. weight Smoker 

2 

2 

2 

2 

6 

7 

8 

8 

8 

9 

9 

1 0  

1 1  

1 1  

1 5  

1 6  

1 9  

1 9  

20 

20 

20 

20 

21  

24 

26 

28 

29 

29 

29 

3.89 

3.89 

3.89 

3.89 

3 .70 

4.08 

3.61 

3.61 

3 .61 

3.83 

3.83 

3.41 

4 . 1 3  

4 . 1 3  

2 .71  

3 . 18 

3 .27 

3 .27 

3.65 

3.65 

3.65 

3.65 

3.42 

3.60 

3.69 

2.38 

2.34 

2.34 

2.34 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Median in non-smokers = 3.83 

Median in smokers = 3.35 

Difference in medians = -0.48 

Second bootstrap sample 

Original B i rth 

obs. no. weight Smoker 

2 

3 

3 

4 

6 

6 

8 

8 

9 

1 2  

1 2  

1 2  

1 5  

1 9  

1 9  

1 9  

2 1  

22  

22  

23  

25  

25 

25 

26 

27 

27 

29 

3.99 

3 .99 

3.89 

3 .60 

3 .60 

3 .73 

3 .70 

3.70 

3.61 

3 .6 1  

3.83 

3.36 

3.36 

3.36 

2 .7 1  

3.27 

3.27 

3.27 

3.42 

3 .23 

3.23 

2 .86 

3 .65 

3.65 

3.65 

3.69 

3 .53 

3.53 

2.34 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Median in non-smokers = 3.61 

Median in smokers = 3.35 

Difference in medians = -0.26 

We have i l lustrated the use of bootstrapping using a simple comparison of 
medians, but the method is quite general and can be used to derive confidence 
intervals for any parameter of a statistical model .  For example, we might fit a 
regression model for the effect of smoking on birthweight ,  control l ing for a 
number of other variables, then derive a bootstrap confidence i nterval by 
repeating this regression on 1 000 different bootstrap samples and recording the 
value of the regression coefficient estimated in each. An example of the derivation 
of d ifferent types of bootstrap confidence interval for proportional hazards 
models is given by Carpenter and Bi thell (2000) .  I/ the model assumptions are not 
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Fig. 30.1 Histogram of the d ifferences in medians (kg) derived from 1 000 bootstrap samples of the data on 

birth weight and smoking. 

violated then the bootstrap confidence interval should be similar to the usual confi
dence interval reported in the regression output. 

An example of the use of bootstrapping is provided by Thompson and Barber 
(2000), who consider the analysis of data on costs of treatment in  clinical trials. 
Costs are often highly skewed, because a small minority of patients incur much 
higher costs of treatment than the rest. Because of this such data have often been 
analysed by log transforming the costs and performing a I-test .  This is a valid 
approach, but i t  will lead to an estimate of the difference in  mean log costs (which 
can be converted to a ratio of geometric mean costs, see Chapter 1 3) .  The problem 
is that health service planners are interested in a comparison of mean costs and not 
i n  a comparison of mean log costs, or in the difference in median costs that might 
be evaluated using non-parametric methods. Bootstrapping provides a way of 
deriving confidence intervals for the difference in mean costs between two groups, 
in circumstances when the non-normality of costs means that confidence intervals 
from standard methods ( t-tests or regression) may not be val id .  

3 0 . 4  R O B U S T  S TA N D A R D  E R R O R S  

I t  was explained i n  Chapter 28 that when we estimate parameters using the 
l ikelihood approach then the standard error of the parameter estimate is derived 
from the curvature of the l ikelihood at the maximum - the more information 
which the data provide about the parameter the more sharply curved is the 
l ikelihood and the smaller the standard error. Throughout this book we have 
used such model-based standard errors to derive confidence intervals and P-val ues. 

Sometimes, we are not confident that the precise probabil i ty model underlying 
the l ikelihood is correct, and so we may not wish to rely on the l ikelihood to 
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provide standard errors for our parameter estimates. Examples of this situation 
are when the residuals in  a multiple regression model are clearly non-normal 
(see Chapter 1 2) or when the data are clustered (as d iscussed in Chapter 3 1 ) . 

An alternative approach, suggested independently by H uber ( 1 967) and White 
( 1 980) is  to estimate standard errors using the variabi l i ty in the data. The formula 
is based on the residuals ( the difference between the outcome and its predicted 
value in the regression model, see Section 1 2.3 ) .  Standard errors estimated in this 
way are known as robust standard errors and the corresponding variance estimate 
is known as the sandwich variance estimate, because of the mathematical form of 
the formula used to estimate i t .  I f  the sample size is large enough then, providing 
that our basic regression model for the mean of the outcome given the level of the 
exposure variables is correct, robust standard errors will be correct, even if the 
probabil ity model for the outcome variable is wrong. Robust standard errors thus 
provide a general means of checking how reasonable are the model-based stand
ard errors (which are calcuated assuming that the probability model is correct) . 

Example 30. 5 
In Section 1 1 . 3  we fitted a multiple regression model of lung function (FEV 1 ,  
l i tres) on age, height and gender among 636 children aged 7 to I 0 years l iving in a 
suburb of Lima, Peru . However, in Section 1 2. 3  we saw that there may be an 
association between the residuals and predicted values in this regression model: if 
this association is real, i t  would violate an assumption underlying the regression 
model. 

Table 30 .7 shows the results of re-analysing these data specifying robust stand
ard errors, compared to the results using model-based standard errors. Note that 
the regression coefficients are the same whichever we use. The effect of specifying 
robust standard errors varies for each of the exposure variables. For age and 
gender (variable 'male') the standard error is only sl ightly increased but for height 
the standard error is  increased by about 1 7  %, with a corresponding reduction in 
the t-statistic (from 1 4.04 to 1 1 . 5 1 )  and an increase in the width of the confidence 
in tervals. I n  this example, our conclusions are broadly similar whether we use 
model-based or robust standard errors. 

Table 30. 7 Regression coefficients, model-based standard errors and robust standard errors, each with 

corresponding t-statistics from the linear regression model relating FEV1 to age, height and gender of the child 

in the Peru study. 

Regression 
Model-based standard error Robust standard error 

FEV1 coefficient s.e. s.e. 

Age 0.0946 0.01 52 6.23 0.01 59 5.96 

Height 0.0246 0.001 8 1 4.04 0.0021 1 1 .51 

Male 0.1 2 1 3  0.01 76 6.90 0.01 77 6.87 

Constant -2.360 0.1 750 -1 3.49 0.208 -1 1 .34 
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3 1 . 1  I N T R O D U CT I O N  

The statistical methods discussed so far in this book are based on the assumption 
that the observations in a sample are independent of each other, that is the value of 
one observation is  not influenced by the value of another. This assumption of 
independence wil l  be violated i f  the data are clustered, that is if  observations in one 
cluster tend to be more similar to each other than to individuals in the rest of the 
sample. Clustered data arise in three main ways: 
1 Repeated measures in longitudinal studies. In this case the clusters are the 

subjects; repeated observations on the same subject will be more similar to 
each other than to observations on other subjects. For example: 

• in studies of asthma or other chronic diseases, episodes of d isease may 
occur on more than one occasion in the same subject; 

• in longitudinal stud ies of common chi ldhood diseases in developing coun
tries, children may experience several episodes of diarrhoea, malaria or 
acute respiratory infections during the course of the study; 

• in a study of card iovascular disease and obesity, measurements of blood 
pressure, body mass index and cholesterol levels may be repeated every 
3 months. 

2 Multiple measures on the same subject. For example, in dental research observa
tions are made on more than one tooth in the same subject. In this case the 
clusters are again subjects. 

3 Studies in which subjects are grouped. Th is occurs for example in :  
• cluster randomized trials ( see Chapter 34) ,  in which groups rather than 

individuals are randomized to receive the di fferent interventions under 
tria l .  For example, the unit of randomization might be general practices, 
with all patients registered in a practice receiving the same intervent ion.  
Since patients in a general practice may be more similar to each other than 
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to patients in other general practices, for example because some areas tend 
to be more deprived than others or because of  exposure to a common 
environmental hazard, the data are clustered. In this case the cluster is  the 
group of  patients registered with a general practice; 

• family studies, since individuals in the same family are l ikely to be more 
similar to each other than to individuals in different famil ies, because they 
share similar genes and a similar environment .  In this case the cluster is  the 
family; 

• surveys where cluster sampling is employed (see Chapter 34). For example, 
in  order to estimate the percentage of 1 4-year-olds in London that work at 
weekends, we might select 1 000 children by randomly sampling 20 schools 
from all the schools in London, then randomly sample 50 chi ldren from 
each of the selected schools. As the children within a school may be more 
similar to each other than to children in different schools, the data are 
clustered. In this case the clusters are the schools .  

I t  is essential that  the presence of clustering is  al lowed for in statistical analyses. 
The main reason for this, as we shall see, is that standard errors may be too small i f  
they d o  not take account of clustering i n  the data. This wil l lead t o  confidence 
intervals that are too narrow, and P-values that are too smal l .  

We wi l l  discuss four appropriate ways to  analyse clustered data: 
1 calculate summary measures for each cluster, and analyse these summary meas

ures using standard methods; 
2 use robust standard errors to correct standard errors for the clustering; 
3 use random effects models which explicitly model the similarity between indi

viduals in  the same cluster; 
4 use generalized estimating equations (GEE) which adjust both standard errors 

and parameter estimates to al low for the clustering. 
We will i l lustrate the importance of taking clustering into account in  the context of 
the following hypothetical example. 

Example 3 7 . 1 
In  a study of the effect of 'compound X' in drinking water on rates of dental 
caries, 832 primary school children in eight d ifferent schools were monitored to 
ascertain the t ime until they first required dental treatment .  Table 3 I . 1  shows data 
for the first 20 children in the study (al l of whom were in  school I ) . S ince 
compound X is measured at the school level, it is constant for a l l  children in the 
same school. The data are therefore clustered and the clusters are the eight 
schools. 

Table 3 1 .2 summarizes the data for each school by showing the number of 
children requiring dental treatment, the total child-years of fol low-up, the treat
ment rate per I 00 child-years and the level of compound X in the school's drinking 
water. Results from a Poisson regression analysis of these data are shown in Table 
3 1 . 3 .  This shows strong evidence that increased levels of compound X were 
associated with decreased rates of dental treatment among the school children .  
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Table 3 1 . 1  Data on the first 20 children in a study of the relationship between rates of dental treatment and the 

level of compound X in  drinking water. 

Level of compound X in 

Required dental treatment school's water supply 

Child's id Years of follow up during follow up? School number (1 000 x ppm) 

4.62 No 7 . 1  

2 3.00 No 7.1 

3 4.44 No 7.1 

4 3.89 No 7 . 1  

5 3.08 No 7.1 

6 2.45 Yes 7 . 1  

7 2.64 Yes 7 . 1  

8 4 . 1 6 No 7 . 1  

9 4.25 No 7.1 

1 0  2.02 Yes 7 . 1  

1 1  3 . 1 3  No 7.1 

1 2  3.49 No 7.1 

1 3  4.75 No 7.1 

1 4  2.39 Yes 7 . 1  

1 5  3.66 No 7 . 1  

1 6  3.43 No 7 . 1  

1 7  2.63 Yes 7 . 1  

1 8  4.21 No 7 . 1  

1 9  2 .63 Yes 7 . 1  

20 2 .74 No 7 . 1  

Table 3 1 .2 Total chi ld-years of  follow-up, treatment rate per 1 00 chi ld-years and the level of  compound X in each 

school's drinking water, from a study of the effect of compound X in drinking water on the 832 children attending 

eight primary schools. 

Number of children 

requiring dental Rate per 1 00 Level of compound X 

School treatment Chi ld-years of follow-up child-years (1 000 x ppm) 

46 456.3 1 0.08 7 . 1  

2 1 9  2 1 5.1 8.83 7.6 

3 1 7  487.8 3.49 8.2 

4 46 459.9 1 0.00 5.4 

5 1 5  201 .2 7.46 8.4 

6 20 1 87.7 1 0.66 6.8 

7 58 399. 1 1 4.53 6.2 

8 20 2 1 2 .5  9.41 8.9 

However, treatment rates among different children in the same school may tend to 
be more similar than treatment rates in children in different schools for reasons 
unrelated to the levels of compound X in the water, for example because children 
in the same school are of similar social background . There would then be more 
observed between-school variability than would be expected in the absence of 
clustering, in which case the strength of the association between treatment rates 
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Table 3 1 .3 Poisson regression of the effect of compound X in drinking water on rates of dental treatment among 

832 children attending eight primary schools. 

(a) Results on rate ratio scale 

Rate ratio 

Compound X 0.82 1 

(b) Results on log scale 

Coefficient 

Compound X 

Constant 

-0. 1 976 

3.6041 

s.e. 

0.0570 

0.3976 

z 

-3.47 

z 

-3.47 

9.07 

P > JzJ 
0.001 

P > JzJ 
0.001 

0.000 

95% Cl 

0.734 to 0 .9 1 8  

95% C l  

-0.3094 to -0.0859 

2.8248 to 4.3833 

and levels of compound X may be exaggerated by t he analysis in  Table 3 1 . 3 ,  which 
does not al low for such clustering. 

3 1 . 2  A N A LY S E S  U S I N G  S U M M A R Y  M EA S U R E S  F O R  E A C H  C L U S T E R  

The simplest way t o  analyse cl ustered data i s  to derive summary measures for each 
cluster. Providing that the outcomes in different clusters are independent ,  standard 
methods may then be used to compare these summary measures between clusters. 

Example 3 1 . 1 (continued) 
For example, we might analyse the compound X data by doing a l inear regression of 
the log treatment rate in  each school on levels of compound X in the school. Results 
of such a regression are shown in Table 3 1 .4. The estimated increase in the log 
rate ratio per unit increase in  level of compound X is -0. 1 866, similar to the value of 
-0. 1 976 estimated in the Poisson regression analysis in Table 3 1 . 3 .  H owever, the 
standard error is  much larger and there is now no evidence of an association 
(P = 0. 1 77) .  Note that the estimated rate ratio per unit increase in  level of com
pound X is simply exp(-0. 1 866) = 0.830, and that 95 % confidence l imits for the 
rate ratio may be derived in a similar way, from the 95 % CI in the regression output. 

The regression analysis in Table 3 1 .4 is a valid way to take into account the 
clustering in the data. I t  suggests that the standard error for the compound X effect 
in the Poisson regression analysis in Table 3 1 . 3 was too smal l ,  and therefore that the 
assumption made in that analysis, that treatment rates among different children in 
the same school were statistically independent, was incorrect . Thus this analysis 
using summary measures has confirmed the presence of clustering within schools. 

Tabl e  3 1 .4 Linear regression of the effect of compound X on the log of the treatment rate in each school. 

Compound X 

Constant 

Coefficient 

-0. 1 866 

3.5334 

s.e. 

0 . 1 220 

0.9035 

-1 .53 

3.91 

P > t 

0.1 77 

0.008 

95% Cl 

-0.4850 to 0 . 1 1 1 9  

1 .3227 to 5. 7441 
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I 
I I 

60 70 80 90 
Level of compound  X in water (1 00xppm) 

Fig. 3 1 . 1  Rate of dental treatment in  each school (log scale), with corresponding 95% confidence intervals 

shown by the vertical l ines. 

Although analyses based on summary measures may be perfectly adequate in  
some circumstances, they can have disadvantages: 
1 They do not enable us to estimate the effect of characteristics of individuals ivithin 

the cluster. For example, rates of treatment might vary according to the age and 
gender of the children . Similarly, in  a longitudinal study of factors associated 
with episodes of asthma, this approach would not al low us to examine whether 
subjects who had a viral infection were at increased risk of an episode of asthma 
during the subsequent week. 

2 They take no account of the precision with which each of' the cluster measures is 
estimated. In this example, the cluster measures are the rates in  each school .  The 
more events (child ren requiring treatment ) ,  the more precise is  t he estimated 
rate. For example, in school 5 only 1 5  children required treatment while in 
school 7, 58 children required treatment. The varying precision with which the 
t reatment rate in  each school is estimated is i l lustrated by the varying widths of 
t he confidence intervals in  Figure 3 1 .  l .  

3 1 . 3  U S E  O F  R O B U S T  S T A N D A R D  E R R O R S  T O  A L L O W  F O R  
C L U S T E R I N G  

As explained i n  the last section, the presence of clustering means that the standard 
errors obtained from the usual regression model will be too small . In Chapter 
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30 we introduced robust standard errors, which are estimated using the variabi l i ty 
in the data (measured by the residuals) rather than the variabi l i ty assumed by 
the statistical model . We can use a modified type of robust standard error 
as another approach to correct for clustering. To do this we add the 
residuals within each cluster together, and then use the resulting cluster
level residuals to derive standard errors that are valid in the presence of 
clustering. 

Example 3 7 .  7 (continued) 
Table 3 1 . 5 shows the results from a Poisson regression analysis based on 
robust standard errors that allow for within-school clustering. The rate ratio is 
identical to that from the standard Poisson regression analysis shown in Table 
3 1 . 3 ,  but the standard error of the log rate ratio has increased from 0.0570 to 
0 . 1 203 .  This analysis gives similar results to the l inear regression analysis using 
summary measures shown in Table 3 1 .4: there is at most weak evidence for an 
association between levels of compound X and treatment rates. However, because 
the analysis is based on individual children we could now proceed to control .for the 
effect of child characteristics. 

I mportant points to note in the use of robust standard errors to correct stand
ard errors for clustering are: 
• Robust standard errors use cluster-level residuals to take account of the simi

larity of individuals in the same cluster. In the presence of clustering, they wil l 
be larger than standard errors obtained from the usual regression model ignor
ing clustering. 

• Use of robust standard errors does not affect the parameter estimate. 
• Robust standard errors wi l l  be correct providing our model is correct and we 

have a reasonable number of clusters ( 2  30) .  
• The log l ikel ihood is not affected when we specify robust standard errors, and 

so likelihood ratio tests do not take account of the clustering. Wald tests must 
therefore be used . 

Table 3 1 . 5  Poisson regression of the effect of compound X levels in drinking water on rates of dental treatment in 

eight primary schools, using robust standard errors to allow for the clustering. 

(a) Results on rate ratio scale 

Compound X 

(b) Resu lts on log scale 

Compound X 

Constant 

Coefficient 

-0.1 976 

3.6041 

Rate ratio 

0.821 

s.e. 

0.1 203 

0.81 47 

z 
-1 .643 

z 
-1 .643 

4.42 

P > lz l 
0.1 00 

P > lz l 
0.1 00 

0.000 

95% Cl 

0.648 to 1 .039 

95% Cl 

-0.4333 to 0.0381 

2.0073 to 5.2008 
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3 1 . 4  R A N D O M  E F F E C T S  ( M U L  Tl L E V E L) M O D E L S  

Arguably the most satisfactory approach t o  the analysis o f  clustered data i s  t o  use 
random effects models that explicitly allow for the clustering. The simplest such 
models al low the average response to vary between clusters. This is done by 
modifying the standard l inear predictor (see Section 29.2) to include an amount 
that varies randomly between clusters: 

l inear predictor for an individual in cluster j = (30 + (3 1x 1  + (32x2 + . . .  + f3pxP + uj 

The random effect u1 i s  assumed to have mean zero, and to vary randomly between 
clusters. It is assumed that the set of random effects { u1 } explain the cl ustering in the 
data so that, having allowed for the random effects, different observations in the 
same cl uster are independent. Random effects models are also known as multilevel 

models, because of the hierarchical data structure in which observations at the first 
level ( the individuals) are nested within observations at the second level ( the 
cluster) .  Table 3 1 .6 shows common assumptions made for the distribution of the 
random effects for different types of regression models. 

For numerical outcomes i t  is usual to assume that both the outcome variable 
within clusters and the random effects are normally distributed; the resulting 
distribution is  also normal . For Poisson regression models, i t  is commonly as
sumed that the random effects { u1 }  have a gamma distribution, which is a gener
alization of the x2 distribution. The combination of the Poisson distribution for 
the outcome within clusters and the gamma distribution of the random effects 
leads to a distribution called the negative binomial, so such random effects models 
are also called negative binomial regression models. For logistic regression models, 
there is no such mathematically well-defined 'composite' distribution, and estima
t ion of these random-effects models has until recently been either unavailable or 
difficult and t ime-consuming. 

Random-effects models are now available in a number of statistical computer 
packages, and are fairly straightforward to fit .  In  addition, specialist software 
packages are available. The relevant routines are referred to as random effects 

models, mixed models, multilevel models, hierarchical models and cross-sectional 

time series depending on the particular package. The latter name arises from the 

Table 3 1 .6 Distribution used for random effects in commonly used regression 
models. 

Type of outcome Type of standard regression Distribution of random effects 

Numerical 

Binary 

Rate 

Linear 

Logistic 

Poisson 

Normal 

Normal 

Gamma 
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use of this approach for repeated measures in longitudinal data (see Section 3 1 . 1  ) ,  
but is  equally applicable to other types of clustered data. 

Example 3 1 . 1 (continued) 
Table 3 1 .7 shows results from a random-effects Poisson regression analysis of the 
effect of levels of compound X in drinking water on rates of dental treatment .  
Compared t o  the standard Poisson regression model shown i n  Table 3 1 . 3 the log 
rate ratio is  only sl ightly changed, but after allowing for the clustering the 
standard error is  much larger than the model-based standard error, and there 
now appears to be at most weak evidence for an association. We can conclude 
there is  more between-school variabil ity than assumed by the Poisson model, 
because of the increase in the standard error. A likelihood ratio test for clustering 

can be derived by comparing the log-l ikelihood for this model with that from a 
standard Poisson regression model. 

The standard error from the random effects model (0. 1 030) is  similar to that in 
the Poisson regression model with robust standard errors (0. 1 203) .  N ote, however, 
that in the random effects model both the parameter estimate ( the log rate ratio) 
and its standard error are modified when we allow for clustering. 

Table 3 1 .7 Random-effects Poisson regression of the effect of compound X levels in drinking water on rates of 

dental treatment in  eight primary schools, al lowing for within-school clustering. 

(a) Results on rate ratio scale 

Rate ratio 

Compound X 0.8333 

(b) Results on log scale 

Compound X 

Constant 

Example 3 1 . 2  

Coefficient 

-0.1 824 

3.5291 

z 
-1 .77 

s.e. 

0.1 030 

0.7459 

P > lzl 
0.077 

z 
- 1 .77 

4.73 

95% Cl 

0.6809 to 1 .01 98 

P > lzl 
0.077 

0.000 

95% Cl 

-0.3843 to 0.01 96 

2.0672 to 4.9909 

In a clinical trial to assess the efficacy and safety of budesonide for the treatment 
of patients with chronic asthma, 9 1  patients were treated with a daily dose of 
200 µg of budesonide ( treatment group) and 92 patients were treated with placebo 
(control group). The outcome variable was FEV 1 (the maximum volume of air 
that an individual can exhale in l second, see Section 1 1 .2) ,  and this was recorded 
at baseline (before the start of treatment) and at 2, 4, 8 and 1 2  weeks after the start 
of treatment. Figure 3 1 .2 shows that the mean FEY 1 in the treatment and control 
groups were similar at the start of treatment (as would be expected in a random
ized trial) but diverged subsequently: FEV1 improved in the treatment group but 
not in the control group. 



2.4 

if)' 2.2 
Q) .l;:J 

> 2 w u.. 
c ro Q) 

� 1 .8 

1 .6 

0 

3 1 .4 Random effects (multilevel) models 363 

• Treatment group - - • - - Control group 

2 4 8 1 2  

Weeks since start of treatment 

Fig. 3 1 .2 Mean FEV1 (with 95% Cls) in the treatment and control groups at baseline (O weeks) and up to 

1 2  weeks from the start of treatment, in a trial of 1 83 patients with chronic asthma. 

Table 3 1 . 8 shows the results of three possible analyses of these data that take 
into account the fact that the means at different t imes are based on the same two 
groups of patients: 
1 The first uses t he average post-treatment FEV 1 for each patient, based on four 

time points for patients for whom there was complete follow-up, and on one, 
two or three t ime points for patients for whom some post-treatment measure
ments were missed . The l inear regression of the mean post-treatment FEY 1 in  
each subject estimates that  the average post-treatment FEY 1 is 0 .2998 l itres 
h igher for those who received budesonide compared to those who received 
placebo. Note that this is equivalent to a t-test comparing the mean of the 
average post-treatment FEV 1  measurements between the treatment and control 
groups. 

2 In the second analysis, the l inear regression is based on the individual post
treatment measurements with robust standard errors used to al low for cluster
ing of the measurements at different time points within subjects. 

3 The third analysis is a random-effects l inear regression of the post-treatment 
FEV1 in each subject at  each time. 

The conclusions are similar in each case: treatment increased FEY 1 by a mean of 
approximately 0.3 l it res. Standard errors, and hence confidence in tervals and ?
values, are also similar in  the three models. 

A random effects model explicitly includes both between-cluster and 1 vithin
cluster variation. For a numerica l outcome (as in Example 3 1 .2)  the model is :  
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YiJ = f3o + f31x 1iJ + {32x2u + . . .  + fJpxPiJ + eiJ + u1, where 

YiJ i s  the outcome for individual i in cluster j 

x1u to XpiJ are the values of the p exposure variables for that indjvidual 

eiJ is  the individual-level random error, and is normally distributed 

with mean 0 and variance (j; 
u1 is the cluster-level random error, and is normally distributed 

with mean 0 and variance (j� 

This model is  the same as the multiple regression model described in  Section 1 1 .4, 
with the addition of the cluster-level random effect u1 . The regression output for the 
random-effects model in  Table 3 1 .8(c) shows the estimated between-patient stand
ard deviation ((}11 = 0.6828) and within-patient standard deviation ((je = 0.2464) .  

Table 3 1 .8 Regression models to  investigate the effect of budesonide treatment on FEV1 in  a clinical trial o f  1 83 

patients with chronic asthma. Analyses by kind permission of Dr Carl-Johan Lamm and Dr James Carpenter. 

(a) Standard linear regression using the mean post-treatment FEV1 measurements in each subject 

Treatment 

Constant 

Coefficient 

0.2998 

1 .8972 

s.e. 

0.1 033 

0.0729 

2.90 

26.04 

p > !t i  
0.004 

0.000 

95% Cl 

0.0960 to 0.5037 

1 .7534 to 2.0409 

(b) Linear regression using the post-treatment FEV1 measurements in each subject at each time, with robust 

standard errors allowing for clustering within subjects 

Coefficient Robust s.e. p > !t i  95% Cl 

Treatment 0.281 2 0.1 044 2.69 0.008 0.0753 to 0.4872 

Constant 1 .91 57 0.0679 28.22 0.000 1. 781 8  to 2.0497 

(c) Random-effects linear regression 

Coefficient s.e. z P > izl 95% Cl 

Treatment 0.2978 0.1 028 2.90 0.004 0.0963 to 0.4993 

Constant 1 .8992 0.0727 26. 1 3  0.000 1 .7567 to 2.041 6 

<Yu 0.6828 0.0370 1 8 .46 0.000 0.61 03 to 0.7553 

<Ye 0.2464 0.0076 32.23 0.000 0.23 1 4  to 0.261 4 

Intraclass correlation coefficient 

The amount of clustering can be measured using the intraclass correlation coeffi

cient ( ICC), which is defined as the ratio of the between-cluster variance to the 
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total variance, which is a combination of the between- and within-cluster vari
ances. 

2 
I ntraclass correlation coefficient, I CC = 

uu 
IJ� + IJ� 

I f  al l the variation is explained by differences between clusters, so that there is no 
variation within clusters and u� = 0, then ICC = 1 .  If u� is estimated to be zero 
then there is no evidence of clustering and ICC = 0. In Example 3 1 . 2, 

ICC = 0.68282 /(0 .68282 + 0.24642 ) = 0.885 

so nearly 90 % of the variation in FEY 1 ,  after accounting for the effect of 
treatment, was between patients rather than within patients. 

Although the P-value for u11 corresponds to a Wald test of the presence of 
clustering, i t  is preferable to test for clustering using a l ikelihood ratio test; by 
comparing the log l ikelihood from the random-effects model ( L;11c ) with the log 
l ikelihood from a standard regression model assuming no clustering ( Lcxc ) .  

Including cluster-level and individual-level characteristics in  random effects 
models 

The effects on the outcome variable of both cluster characteristics and of 
characteristics of ind ividual observations within clusters may be included in 
random-effects models. For the asthma trial data, this corresponds to including 
characteristics of patients and of observations at different times on the same patient. 

Example 3 7 . 2  (continued) 
In  Table 3 1 .9 the random-effects model shown in Table 3 l . 8(c) has been extended 
to include patients' FEV 1 measurements before the start of treatment (a cluster 

Table 3 1 .9 Random-effects l inear regression of the effect of budesonide treatment on FEV1 in a clinical trial of 1 83 

patients with chronic asthma, including baseline FEV1 and a treatment-time interaction. 

Coefficient s.e. z P > lzl 95% Cl 

treatment 0.2695 0.0772 3.49 0.000 0 . 1 1 82 to 0.4207 

weeks -0.01 04 0.0035 -2.96 0.003 -0.01 73 to -0.0035 

treat.weeks 0.01 27 0.0049 2.62 0.009 0.0032 to 0.0222 

fevbase 0.7562 0.0577 1 3 . 1 2  0.000 0.6432 to 0.8692 
constant 0.4039 0.1 293 3 . 1 2 0.002 0 . 1 504 to 0.6574 

Uu 0.4834 0.0271 1 7.85 0.000 0.4303 to 0.5364 

Ue 0.2445 0.0076 32.1 7 0.000 0.2296 to 0.2594 
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characteristic) and the interaction between treatment and time (a  covariate that 
varies within clusters ) .  

The interpretation of regression coefficients in models including in teraction was 
explained in detail in Section 29.5 .  Variable weeks was coded as time since the 2-
week measurement, so the regression coefficient for variable treatment estimates 
the treatment effect (mean difference in FEY 1 )  at 2 weeks ( the baseline of the post
treatment groups) while the regression coefficient for variable iveeks estimates the 
mean increase in FEY 1 per week in  the control group ( the group corresponding to 
the baseline value of treatment) .  The regression coefficient for the interaction 
parameter (variable treat. weeks) estimates the mean increase in  the effect of 
treatment per week: thus the effect of treatment is  estimated to i ncrease by 
0 .0 1 27 l i t res per week, between week 2 and week 1 2. As might be expected, t here 
is a strong association between baseline FEY 1 and post-treatment FEV1 ( regres
sion coefficient 0 .7562 for variable fevbase), and controll ing for baseline FEY 1 
has substant ially reduced the estimated between-patient standard deviat ion 
(u11 = 0.4834, compared to 0 .6828 in the model including only the effect of 
treatment) .  The intraclass correlation coefficient from this model is  0 .796. 

3 1 . 5  G E N E R A L I Z E D  E S T I M AT I N G  E Q U AT I O N S  ( G E E ) 

Estimation of generalized l inear models incorporating random effects is difficult 
mathematically i f  the outcome is non-normal, except in the case of random-effects 
Poisson models which exploit a mathematical ' trick' where assuming a part icular 
distribution for the random effect leads to a well-defined 'composite' distribution 
for the outcome ( the negative binomial distribution) .  For other models, in par
t icular logistic regression models, no such trick is  available and estimation of 
random-effects models has unti l  recently been either unavailable or difficult and 
time consuming. 

Generalized estimating equations (GEE) were introduced by Liang and Zeger 
( 1 986) as a means of analysing longitudinal, non-normal data without resorting to 
ful ly specified random-effects models. They combine two approaches: 
I Quasi-likelihood estimation, where we specify only the mean and variance of the 

outcome, rather than a full probabil ity model for its distribution. In GEE, the 
quasi-l ikelihood approach is generalized to allow a choice of structures for the 
correlation of outcomes within clusters; this is called a 'working' correlation 
structure. However, i t  is important to understand that these correlation struc
tures need not (and often do not) correspond to a correlation structure derived 
from a ful l ,  random effects, probability model for the data. 

2 Robust standard errors are used to take account of the clustering, and the fact 
that the parameter estimates are not based on a full probabil ity model. 

Note that for normally distributed outcomes, parameter estimates from GEE are 
identical to those from standard random-effects models. 

The most common choice of correlation structure, and the only one that we 
shall consider here, is the 'exchangeable' correlation structure in which the carrel-
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ation between a pair of observat ions in the same cl uster is assumed to be the same 
for all pairs in each cluster. 

Example 3 1 . 3  
The data set we  shall use to compare GEE with other approaches to the analysis of  
clustered data comes from a study of the impact of  H IV on  the  infectiousness of  
patients with pulmonary TB ( Ell iott e t  al. , AIDS 1 993,  7 :98 1 -987) . This study was 
based on 70 pulmonary TB patients in Zambia, 42 of whom were infected with 
H I V  and 28 of whom were uninfected. These pat ients are referred to as index 
cases. The aim of the study was to determine whether H I V-infected index cases 
were more or less l ikely than H IV-negative index cases to transmit M. tuberculosis 
infection to their household contacts. 

Three hundred and seven household contacts were traced, of whom 1 8 1  were 
contacts of H I V-infected index cases. The mean number of contacts per H IV
infected index case was 4.3 ( range 1 to 1 3 ), while the mean number of contacts per 
H IV-uninfected case was 4.5 ( range 1 to 1 1 ) . All these contacts underwent a 
Mantoux skin test for t uberculosis infection. An induration (skin reaction) of 
diameter 2 5 mm was considered to be a positive indication that the contact had 
tuberculosis infection. Information on a number of household level variables (e .g. 
H I V  status of TB patient, crowding) and on a number of individual contact level 
variables (e.g. age of contact, degree of intimacy of contact) was recorded . I f  some 
index cases are more infectious than others, or household members share previous 
exposures to TB, then the outcome ( result of the Mantoux test in household 
contacts )  will be clustered within households. 

Table 3 1 . 1 0 shows that, overall ,  1 84/307 (59.9 %) of household contacts had 
positive Mantoux tests, suggesting that they had tuberculosis infection. This 
proportion appeared lower among the contacts of H I V-infected index cases 
(5 1 .9 %) than among contacts of H I V-uninfected index cases ( 7 1 .4 %) .  

Table 3 1 . 1 1 (a )  shows the results from a standard logistic regression model, 
ignoring any clustering within households. The odds ratio comparing 
contacts of HIV-infected index cases with contacts of H I V-uninfected index 
cases was 0.432 (95 % CI 0 .266 to 0.70 1 ) . However, as explained earlier in  the 
chapter, ignoring within-household clustering may mean that this confidence 
interval is too narrow. 

Table 3 1 . 1 0  2 x 2 table showing the association between Mantoux test status in 

household contacts of tuberculosis patients and the HIV status of the index case. 

HIV status of index case 

Mantoux test status Positive Negative Total 

Positive 94 (51 .9%) 90 (71 .4%) 1 84 (59.9%) 
Negative 87 (48.1 %) 36 (28.6%) 1 23 (40 . 1 %) 

Total 1 81 1 26 307 
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Table 3 1 . 1 1  Regression outputs (odds ratio scale) for the association between Mantoux 

test positivity in household contacts of tuberculosis patients, and the HIV-infection status of 

the index case. 

(a) Standard logistic regression 

Odds ratio z P > lzl 95% Cl 

HIV-infected 0.432 -3.40 0.001 0.266 to 0. 701 

(b) Logistic regression, using robust standard errors to allow for within-household clustering 

Odds ratio z P > lzl 95% Cl 

HIV-infected 0.432 -2.52 0.01 2 0.225 to 0.829 

(c) Generalized estimating equations (GEE) with robust standard errors to allow for within

household clustering 

Odds ratio z P > lzl 95% Cl 

HIV-infected 0.380 -2.96 0.003 0.200 to 0.721 

We will now compare these results with those in parts (b) and (c) of Table 3 1 . 1 1  
from two different methods that allow for clustering. First, part (b )  shows the results 
specifying robust standard errors in the logistic regression model to allow for within
household clustering (see Section 3 1 . 3 ) .  This approach does not change the esti
mated odds rat io .  However, the 95 % confidence interval is  now wider, and the P
value has increased to 0 .0 1 2  from 0.00 1 in the standard logistic regression model. 

Part (c) of Table 3 1 . 1 1 shows results from a GEE analysis assuming an 'ex
changeable' correlation structure. As well as correcting the standard errors, confi
dence intervals and P-values to account for the clustering, the odds ratio has 
reduced from 0.43 to 0.38 after taking account of within-household clustering. 
This is because the GEE analysis gives relatively less weight to contacts in large 
households. Box 3 1 . 1  summarizes theoretical issues in the GEE approach to the 
analysis of clustered data. 

3 1 . 6  S U M M A R Y  OF A P P R O A C H E S  TO T H E  A N A L Y S I S  O F  C L U S T E R E D  

DATA 

1 If  data are clustered, it is  essential tha t  the  clustering should be  allowed for in  
the analyses. I n  particular, fai lure to allow for clustering may mean that 
standard errors of parameter estimates are too small, so that confidence inter
vals are too narrow and P-values are too smal l .  

2 I t  is  always valid to  derive summary measures for each cluster, then analyse 
these using standard methods. However, analyses based on such summary 
statistics cannot take account of exposure variables that vary between individ
uals in  the same cluster. 



3 1 .6 Summary of approaches to the analysis of clustered data 369 

BOX 3 1 . 1  THEORETICAL ISSUES I N  USING GEE 

• We do not need to assume that the correlation matrix i n  GEE is correct; 
hence it is known as a 'working' correlation matrix. The parameter 
estimates and standard errors will still be correct ('consistent') provided 
that the sample size is  large enough. 

• However, the choice of correlation matrix will affect the parameter esti
mates. If we assume independence, that is no clustering within groups, 
then the parameter estimates will be the same as for the corresponding 
generalized l inear model. To derive parameter estimates adjusted as far as 
possible for the clustering, we need to specify the most realistic correlat ion 
matrix possible. 

• The GEE approach treats the clustering as a nuisance of no intrinsic 
i nterest, but provides parameter estimates and standard errors corrected 
for the clustering. Unlike random effects models, GEE estimates are not 
based on a fully specified probability model for the data (except for 
models with an ident i ty l ink function : see Section 29.2) . GEE models are 
also known as 'population-averaged' or 'marginal' models because the 
parameter estimates refer to average effects for the population rather 
than to the effects for a particular individual within the population. 

• The GEE approach a llows flexibil ity in  modelling correlations, but l i tt le 
flexibi l i ty in  modell ing variances. This can have serious l im itations for 
modell ing of grouped counts or proportions, such as i n  the compound X 
example above, or in a study of malaria risk if the outcome was the 
proportion of mosquitoes landing on a bednet that were found to be 
infective. 

• Assumptions about the processes leading to missing data are stronger for 
GEE than for random-effects models. For example, consider a longitu
dinal study in which repeated examinations are scheduled every three 
months, but in  which some individuals do not attend some exam inations. 
In  GEE, i t  is  assumed that data from these examinations are missing 

completely at random, which means that the probabil ity that an observa
t ion is m issing is  independent of all other observations. For random
effects models the assumption is  that data are missing at random, which 
means that the probabi li ty that an observation is  missing is  independent of 
its t rue value at that t ime, but may depend on values at other t imes, or on 
the values of other variables in the dataset. 
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3 The l ikely effect of the clustering on standard errors may be assessed by 
specifying robust standard errors that al low for the clustering. Parameter 
estimates will not be affected. For such robust standard errors to be rel iable 
we need a reasonable number of clusters (at least 30). Wald tests, rather than 
likelihood ratio tests, must be used. 

4 Random-effects (mult i level) models allow for the presence of clustering by 
modifying the l inear predictor by a constant amount Uj in cluster j. The random 
effects { u1 } are assumed to vary randomly between clusters. Random-effects 
models work well for normally distributed outcomes and Poisson regression, 
but estimation of random-effects logistic models is difficult and computation
ally demanding. 

5 Generalized estimating equations (GEE) modify both parameter estimates and 
standard errors to allow for the clustering. Again, there should be a reasonable 
number of clusters. The GEE approach is particularly useful in  logistic regres
sion analyses and when the focus of interest is on the estimated exposure e ffect 
and where the clustering is of no intrinsic interest .  

In this chapter we have described only the simplest types of model for the analysis 
of clustered data. In particular the random effects models presented in Section 
3 1 .4 include a single random effect to allow for the clustering. Such models have a 
wealth of possible extensions: for example, we may investigate whether exposure 
effects, as well as cluster means, vary randomly between clusters. For more detai ls 
on the analysis of clustered data and random-effects (multi level) models, see 
Goldstein ( 1 995) ,  Donner and Klar (2000) or Bryk and Raudenbush (200 1 ) . 
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3 2 . 1  I N T R O D U C T I O N  

There has been an explosion 111 research evidence i n  past decades; over half a 
mil l ion articles are published annually in the biomedical l i terature. I t  is common 
for important issues in medical research to be addressed in  several studies. I ndeed, 
we might be reluctant to introduce a new treatment based on the result of one t rial 
alone. This chapter focuses on how the evidence relating to a particular research 
question can be summarized in order to make it accessible to medical practit ioners 
and inform the practice of evidence-based medicine. In  particular we d iscuss: 
• systematic reviews of the medical l i terature; 
• the statistical methods which are used to combine effect estimates from different 

studies (meta-analysis); 
• sources of bias in  meta-analysis and how these may be detected . 
Because systematic reviews and meta-analyses of medical research are mainly 
(though not exclusively) used in combining evidence from randomized t rials, we 
wil l refer throughout to treatment effects, rather than to exposure effects. 

More detail on all the statistical methods presented in this chapter can be found 
in Systematic Revieivs in Health Care: Meta-Analysis in Context edi ted by Egger, 
Davey Smith and Altman (200 1 ) ; see www.systematicreviews.com. 
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3 2 . 2  S Y S T E M AT I C  R EV I EWS 

The need to summarize evidence systematically was i l lustrated by Antman e t  al. 
( 1 992), who compared accumulating data from randomized control led trials 
of treatments for myocardial infarction (heart attack) with the recommendations 
of cl inical experts writing review articles and textbook chapters. By the mid- l 970s, 
based on a meta-analysis of around ten trials in more than 2500 patients, there was 
good evidence of a protective effect of thrombolytic therapy after myocardial 
infarction against subsequent mortality. However, trials continued to be per
formed for the next 1 5  years ( the cumulative total patients had reached more 
than 48 000 by 1 990) .  I t  was not until the late 1 980s that the majority of textbooks 
and review articles recommended the routine use of thrombolytic therapy after 
myocardial infarction. 

I t  is now recognized that a conventional 'narrative' l i terature review - a 'sum
mary of the information available to the author from the point of view of the 
author' - can be very misleading as a basis from which to draw conclusions on the 
overal l  evidence on a particular subject . Reliable reviews must be systematic i f  bias 
in the interpretation of findings is to be avoided . 

Cook et al. ( 1 995)  defined a systematic review of the l iterature as 'the application 
of scient ific strategies that limit bias by the systematic assembly, critical appraisal 
and synthesis of all relevant studies on a specific topic'. The main feature which 
distinguishes systematic from narrative reviews is  that they have a methods section 
which clearly states the question being addressed, the subgroups of interest and 
the methods and criteria employed.for identifying and selecting relevant studies and 
extracting and analysing in.formation. Systematic reviews are a substantial under
taking and a team with expertise in both the content area and review methodology 
is usually needed. 

Guidelines on the conduct of systematic reviews may be found in Egger, Davey 
Smith and Altman (200 1 )  and in the Cochrane Collaboration handbook. The 
QUOROM statement (Moher et al. 1 999) suggests guidelines for the reporting 
of systematic reviews. 

3 2 . 3  T H E  C O C H R A N E  A N D  C A M P B E L L  C O L L A B O R A T I O N S  

We have seen that: 
• medical practice needs to be based on the results of systematic reviews, rather 

than (non-systematic) 'expert reviews' of the l iterature; 
• to perform a systematic review is a substantial undertaking 
The Cochrane Collaboration (www.cochrane.org), which started in  1 993,  is  an 
attempt to address these issues. It aims to produce systematic, periodically up
dated reviews of medical and public health interventions. Cochrane reviews are 
available in electronic form (via CD-ROM and on the internet) ,  which means that 
reviews can be updated as new evidence becomes available or if mistakes have 
been identified. Already, more than 1 000 systematic reviews are available as 
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part of the Cochrane Collaboration, and some 1 50 000 studies are indexed in the 
database of randomized contro lled trials. 

The Campbell Collaboration (www.campbellcollaboration.org) is a similar ini
t iative for systematic reviews of social and educational policies and practice, some 
of which include an impact on health-related outcomes. 

3 2 . 4  M ET A - A N A L Y S I S  

The statistical methods for combining the results o f  a number o f  studies are 
known as meta-analysis. It should be emphasized that not all systematic reviews 
wil l contain a meta-analysis; this wil l depend on whether the systematic review has 
located studies that are sufficiently similar to make it reasonable to consider 
combining their results . The increase in interest in meta-analysis is i l lustrated by 
the fact that whi le in 1 987 there were five MEDLINE citations using the term 
M ETA-ANALYSIS, this had increased to 380 by 1 99 1 ,  and 580 by 200 1 .  

We wil l i l lustrate methods for meta-analysis using studies with a binary out
come and measuring treatment effects using odds ratios. Corresponding methods 
exist for other treatment effect estimates such as risk ratios or risk d i fferences, and 
for continuous outcome measures. 

Example 32. 7 Effect of diuretics on pre-eclampsia in pregnancy 
I n  an early meta-analysis, Collins et al. ( 1 985)  examined the results of randomized 
controlled trials of diuretics in pregnancy. After excluding t rials in which they 
considered that there was a possibility of severe bias, they found nine trials in 
which the effect of d iuretics on pre-eclampsia (a  rapid increase in blood pressure 
or proteinuria which may have severe sequelae) was reported. Table 32 . 1 summar
izes the results of these trials. 

Table 32 . 1  Results of  n ine  randomized controlled trials of diuretics in pregnancy. 

Pre-eclampsia/total 

First author Treated patients Control patients Odds ratio (95% Cl) 

Weseley 1 4/ 1 3 1  1 4/ 1 36 1 .043 (0.477, 2.28) 

Flowers 2 1 /385 1 7  / 1 34 0.397 (0.203, 0.778) 

Menzies 1 4/57 24/48 0.326 (0.1 42, 0. 7 44) 

Fall is 6/38 1 8/40 0.229 (0.078, 0.669) 

Cuadros 1 2/ 1 01 1 35/760 0.249 (0. 1 2 8, 0.483) 

Landesman 1 38/1 370 1 75/1 336 0.743 (0.586, 0.942) 
Kraus 1 5/506 20/524 0. 770 (0.390, 1 .52) 

Tervila 6/1 08 2/1 03 2.971 (0.586, 1 5 . 1 )  
Campbell 65/ 1 53 40/ 1 02 1 . 1 45 (0.687, 1 .91 ) 

In  order to make an overall assessment of the effect of diuretics on pre-eclampsia, 
we would l ike to combine the results from these n ine studies into a single summary 
estimate of the effect, together with a confidence interval .  In doing this :  
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• Treated ind ividuals should only be compared with control ind ividuals from the 
same study, since the characteristics of patients in the different studies may 
differ in important respects, for example, because of different entry criteria, or 
because they come from different study populations which may have different 
underlying risks of pre-eclampsia.  Thus simply combining patients across the 
studies would not be an appropriate way to estimate the overal l  treatment 
effect .  

• Note that  even if  a l l  the studies are broadly comparable, sampling error wil l 
inevitably mean that the observed treatment effects wil l vary. In this example 
the estimated odds ratios vary from 0.229 ( Fall is) to 2 .97 1 (Tervila ) .  

• The relative sizes of the studies should be taken into account .  Note that  the 
most extreme resul ts (odds ratios furthest away from 1 )  come from the smaller 
studies. 

In the next two sections we describe fixed-effect and random-effects approaches to 
meta-analysis. A fixed-effect meta-analysis can be conducted if  i t  is  reasonable to 
assume that the underlying treatment effect is the same in al l  the studies, and that 
the observed variation is due entirely to sampling variat ion. The fixed-effect 
assumption can be examined using a test of heterogeneity between studies, as 
described at the end of Section 32 .5 .  A random-effects meta-analysis aims to 
al low for such heterogeneity, and is described in Section 32 .6 .  

3 2 . 5  F I X E D - E F F E C T  M ETA-A N A LY S I S  

I n  a fixed-effect meta-analysis, we assume that the observed variation i n  treatment 
effects in the different studies is due entirely to sampling variation, and that the 
underlying treatment effect is the same in all the study populations. Table 32.2 
shows the notat ion we wil l use for the results from study i (when we have a binary 
outcome, as in Example 32 . 1 ) . The estimate of the odds ratio for the treatment 
effect in study i is 

OR; = d1 ; x ho; 
do; x h 1 ;  

I n  Example 32 . 1 ,  we  have ni11e such tables of the effects of treatment with diuretics 
on pre-eclampsia, one from each of the nine trials, and n ine odds ratios. The 

Table 32.2 Notation for the 2 x 2 table of results from study i. 

Group 1 (intervention) 

Group 0 (control) 

Total 

Outcome 

Experienced event: Did not experience event: 
D (Disease) H (Hea lthy) Total 

d; h; n; 
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summary estimate of the treatment effect is calculated as a weighted average ( see 
Section 1 8 . 3 )  of the log odds ratios from the separate trials: 

log(ORF) = .L:[w; x log(OR;)] 

.L:w; 

The subscript F denotes the assumption that the effect of diuretics is the same, or 
fixed, in each study. Note that individuals are only compared with other individ
uals in the same study (via the study log odds rat io) .  

I n  the inverse variance method, the weight i v; for study i equals the inverse 
of the variance, v;, of the estimated log odds ratio in that study (see Section 
1 6.7 ) :  

Inverse variance weights: w ;  = 1 / v;, 

where v; = l /d1 ; + l /h 1 ;  + I /do; + I /ho; 

This choice of weights minimizes the standard error of the summary log odds 
ratio, which is: 

s.e. ( log(ORF) )  = j"l L.J W; 

This can be used to calculate confidence intervals, a z statist ic and hence a P-value 
for the summary log odds ratio. An alternative weighting scheme is to use Mantel

Haenszel weights to combine the odds ratios from the individual studies. These 
are: 

Mantel-Haenszel weights: w; = do;li 1 ;/n; 

Example 32. 1 (continued) 
Results from a fixed-effect meta-analysis of the data on the effect of diuretics in 
pregnancy are shown in  Table 32.3. This gives clear evidence that the odds of pre
eclampsia were reduced in mothers treated with diuretics. As usual, the estimated 
summary log odds ratio and i ts con fidence interval have been converted to an 
odds ratio, for ease of interpretation. 
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Tabl e  32.3 Results of a fixed-effect meta-analysis of 

results from nine randomized controlled trials of 

diuretics in pregnancy. 

z 

0.672 -4.455 

Note on sparse data 

P-value 95% Cl 

< 0.001 0.564 to 0.800 

If any of the cel l s  in the 2 x 2 table for one (or more) of the contributing studies 
contains zero, then the formulae for the Jog OR; and corresponding variance, v;, in 
that table break down. When this happens, it is conventional to add 0.5 to all cel ls 
in  the table,  and i t  may be preferable to use Mantel-H aenszel weights. In other 
circumstances the inverse-variance and Mantel-Haenszel methods wil l give similar 
results. 

Forest plots 

Results of meta-analyses are displayed in a standard way known as a 'forest plot' , 
and such a plot of the diuretics data is shown in Figure 32. 1 .  The horizontal  l ines 
correspond to the 95 % confidence intervals for each study, with the corresponding 
box area drawn proportional to the weight for that individual study in the meta
analysis. Hence the wider is the confidence interval the smaller is  the box area. The 
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Menzies 

Fal l is 

Cuadros 

Landesman 
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Tervi la 

Campbel l 

Summary 

.05 

I 

I 

. 1  .25 

I 

.5  1 2 4 8 1 6  

Odds ratio 

Fig. 32 . 1  Forest plot of the results of a fixed-effect meta-analysis of n ine studies of the effect of d iu retics in 

pregnancy. 
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diamond (and broken vertical l ine) represents the summary estimate, and the 
confidence interval for the summary estimate corresponds to the width of the 
diamond. The unbroken vertical line is at the null value ( I )  of the odds ratio, and 
is equivalent to no treatment effect .  Note that the horizontal axis is  plotted on a 
log scale, so that con fidence intervals are symmetrical and an odds ratio of (e.g. ) 2 
is the same d istance from 1 as 1 /2 = 0 .5 .  

The exact origin of the name 'forest plot' is not  clear. One possible derivation i s  
that  i t  al lows one to avoid the pitfall of 'not  being able to see the wood for the 
trees' . 

Testing for heterogeneity between studies 

The fixed-effect estimate is based on the assumption that the true effect does not 
differ between studies. This assumption should be checked. We can do this using a 
x2 test of heterogeneity, similar to that described for Mantel-Haenszel methods in 
Section 1 8 . 5 .  The greater the average distance between the log odds ratios esti
mated in the individual stud ies and the summary log odds ratio, the more evidence 
against the nul l  hypothesis that the true log odds ratios are the same. The x2 test of 
heterogeneity (often denoted by Q) is based on a weighted sum of the squares of 
these differences: 

x2 = Q = L:w; [log(OR;) - log(ORF)]2 

d .f. = number of studies - 1 

Example 32. 1 (continued) 
For the data on the effect of diuretics in pregnancy, 

x2 = 27.265, d .f .  = 9- 1  = 8,  P = 0.00 1 

There is therefore strong evidence (confirming the impression in the graph) that 
the effect of diuretics differs between studies. 

3 2 . 6  R A N D O M - E F F E C T S  M E T A - A N A LY S I S  

I f  there i s  evidence o f  heterogeneity between studies, how should we proceed? 
Although it can be argued that it is inappropriate to calculate a summary measure 
( th is is d iscussed fur ther below), it is also possible to allow for the heterogeneity by 
incorporating a model for the heterogeneity between studies into the meta-analy
sis. This approach is called random-effects meta-analysis. 
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In random-effects meta-analysis, we assume that the 'true' log odds ratio in each 
study comes from a normal distribution: 

log(OR;) � N(log (ORR) ,  T2 ) 
whose mean equals the true 'overall' treatment effect and whose variance is 
usually denoted by T2 ( T is the Greek letter tau) . We estimate this between-study 
variance, T2 , from the observed data (see below) and use this to modify the weights 
used to calculate the random-effects summary estimate: 

log(ORR ) = E[w7 x log(OR;) ]  

Ew7 
1 w1 = ---? ,  where v; = l /d1 ; + l /h i i + l /do; + I /ho; 

V; + T-

The standard error of the random-effects summary estimate is calculated from the 
inverse of the sum of the adjusted weights: 

Estimating the between-study variance 

The most commonly used formula for estimating the between-study variance, T2 , 
from the observed data was put forward by DerSimonian and Laird ( 1 986) .  I t  is  
based on the value of the x2 test of heterogeneity, represented by Q, the unadjusted 
weights, i v;, and the number of contributing studies, k: 

2 _ [o (Q - (/c - 1 )) ] T - max , 
W 

, 

where Q = x2 = Ew; ( log(OR;)  - log(ORF))2 (Ew2) 
and W = Ew; - --' 

Ew; 

The mathematical detai ls are included here for completeness. I n  practice the 
computer would calculate this as part of the random-effects meta-analysis routine. 
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Table 32.4 Comparison of fixed-effects and random-effects meta-analysis results of 

nine randomized controlled trials of the impact of diuretics in pregnancy on pre

eclampsia. 

Method 

Fixed-effects 

Random-effects 

Summary OR 

0.672 

0.596 

Example 32. 1 (continued) 

95% Cl 

0.564 to 0.800 

0.400 to 0.889 

z 

-4.455 

-2.537 

P-value 

<0.001 

0.01 1 

For the data on the effect of diuretics in pregnancy, the estimate of the between
study variance is  T2 = 0 .230, and the summary OR is ORR = 0 .596, somewhat 
smaller than the fixed-effect estimate. The confidence interval is correspondingly 
much wider, as can be seen in Table 32 .4, which presents the results from both the 
fixed-effect and random-effects meta-analyses. 

Comparison of fixed-effect and random-effects meta-analysis 

Because of the addition of T2 ( the estimated between-study variance) to their 
denominators, random-effects weights are: 
I smaller, and 
2 much more similar to each other 
than their fixed-effect counterparts. Table 32 .5 illustrates this for the d iuretics 
trials of Example 32 . 1 .  This results in: 
3 smaller stud ies being given greater relative weight, 
4 a wider confidence in terval for the summary estimate, and 
5 a larger P-value 
compared to the corresponding fixed-effect meta-analysis ( see Table 32.4) .  Thus a 
random-effects meta-analysis will in general be more conservative than its fixed
effect counterpart. This reflects the greater uncertainty inherent in the random
effects approach, because i t  is assumed that, in addition to sampl ing variation, the 
true effect varies between studies. 

Table 32 .5 Comparison of the weights used in the fixed-effect and random-effects meta

analyses of the diuretics trial data, shown in Table 32 . 1 .  

Study Odds ratio (95% Cl) Fixed-effects weight Random-effects weight 

Weseley 1 .04 (0.48 to 2.28) 6.27 2 .57 

Flowers 0.40 (0.20 to 0.78) 8.49 2.88 

Menzies 0.33 (0.1 4 to 0.74) 5.62 2.45 

Fall is 0.23 (0.08 to 0.67) 3.35 1 .89 

Cuadros 0.25 (0. 1 3  to 0.48) 8.75 2.91 

Landesman 0. 74 (0.59 to 0.94) 68.34 4.09 

Kraus 0.77 (0.39 to 1 .52) 8.29 2.85 
Tervi la 2 .97 (0.59 to 1 5. 1 )  1 .46 1 .09 

Campbell 1 . 1 4  (0.69 to 1 .91 ) 1 4.73 3.36 
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Note that the greater the estimate of T2 , the greater the difference between the 
fixed-effect and random-effects weights. If T2 (the between-study variance) is 
estimated to be zero, then the fixed-effect and random-effects estimates will be 
identical .  

Interpretation of the summary estimate from a random-effects meta-analysis 

The interpretation of the random-effects summary estimate is in fact very different 
to that of the fixed-effect one. I n  fixed-effect meta-analysis it is assumed that the true 
effect is  the same in each study and that the only reason for variation in  the estimates 
between studies is sampling error. I n  other words, i t  is assumed that the treatment 
effect is universal, and the meta-analysis provides the best available estimate of i t .  

I n  random-effects meta-analysis, the estimate is  of a mean effect about which i t  
is assumed that the t rue study effects vary . There is disagreement over whether i t  i s  
appropriate to use random-effects models to combine study estimates in the 
presence of heterogeneity, and whether the resulting sununary estimate is mean
ingful. This wil l be i l lustrated in Example 32.2 .  

Example 32.2 BCG vaccination 
I t  has been recognized for many years that the protection given by BCG vaccin
ation against tuberculosis varies between settings. For example, the risk ratio 
comparing vaccinated with unvaccinated individuals in the MRC trial in  t he 
U K  (conducted during the 1 960s and 1 970s) was 0 .24 (95 % CI  0. 1 8  to 0 . 3 1 ) , 
while in the very large trial in Madras, south India, there appeared to be no 
protection ( risk ratio 1 .0 1 ,  95 % CI 0 .89 to 1 . 1 4) .  

In  a meta-analysis published i n  1 994, Colditz et al. used all trials i n  which 
random or systematic allocation was used to decide vaccine or placebo, and in 
which both groups had equivalent surveillance procedures and similar lengths of 
follow-up. U sing a random-effects meta-analysis (having noted the h ighly signifi
cant heterogeneity between trials) they concluded that the risk ratio was 0.49 (95 % 
C I  0.34 to 0 .70) .  

While Colditz et al. concluded that ' the results of th is meta-analysis lend added 
weight and confidence to arguments favouring the use of BCG vaccine', Fine 
( 1 995)  reached different conclusions. Noting, l ike Colditz et al. , the strong associ
ation between latitude and estimated effect of the vaccine ( BCG appe::ired to work 
better further away from the equator) he commented that 'it is  invalid to combine 
existing data into a single overall estimate' and further that 'most of the stud ies of 
BCG have been at relatively high latitudes whereas their current use is mainly at 
lower latitudes ' .  Thus i t  can be argued that random-effects meta-analysis is  simply 
a means of combining 'apples and pears' :  forming an average of estimates of 
quantit ies whose values we know to be different from each other. 

We also saw earlier that in a random-effects meta-analysis studies are weighted 
more equally t han in a fixed-effect meta-analysis. If a random-effects summary 
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estimate differs from the fixed-effect estimate, this is a sign that the average 
estimate from the smaller studies differs from the average of the large ones. 
Given that small studies are more subject to publication bias than large ones 
( see Section 32 .7 ) ,  this is clearly a d isadvantage of random-effects meta-analyses. 
While explanations for heterogeneity may provide useful insights into differences 
between studies, and may have implications for clinical practice, we should be very 
cautious about an approach that adjusts for heterogeneity without explaining i t .  

Meta-regression 

While there is  disagreement over whether it is appropriate to use random-effects 
models to combine study estimates in the presence of heterogeneity, it is  clear that 
the investigation of sources of heterogeneity (such as study latitude in the example 
above) may yield important insights. In the case of BCG vaccination, Fine 
discusses how the association with latitude may be because of differential exposure 
to environmental mycobacteria in different populations, which may in turn yield 
insights into mechanisms of immunity to mycobacterial diseases. 

Meta-regression can be used to examine associations between study character
istics and treatment effects. In this approach, we postulate that the t reatment 
effect (e.g. log odds rat io )  is related in a l inear manner to one or more study 
covariates. 

Then, as with random-effects meta-analysis, we incorporate an additional vari
ance component T2 that accounts for unexplained heterogeneity between studies. 
The meta-regression procedure i terates between ( i )  estimating T2 , and ( i i )  using 
this estimate in  a weighted regression to estimate the covariate effects .  The 
estimated covariate effects lead to a new estimate of T2, and so on.  The process 
stops when consecutive steps in the i teration yield almost identical values for T2 
and for the covariate effects; the model is then said to have converged . 

3 2 . 7  B I A S  I N  M ET A - A N A LY S I S  

The emphasis o n  the importance o f  sound methodology for systematic reviews 
arises from the observation that severe bias may result if this methodology is not 
applied. Summarizing the results of five biased trials will give a precise but biased 
result !  

Causes of bias: poor trial  quality 

Empirical evidence that methodological quality of studies was associated with 
estimates of t reatment effect in clin ical trials was first provided in an important 
study by Schulz et al. ( 1 995), who assessed the methodological quality of 250 
control led trials from 33 meta-analyses of treatments in the area of pregnancy and 
childbirth .  They found that trials in which treatment al location was inadequately 
concealed (see Chapter 34) had odds ratios which were exaggerated ( i .e .  further 
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away from 1 )  by 4 1  % compared to trials which reported 'adequate concealment' .  
Trials that were not double-blind yielded 1 7  % larger estimates of effect. 

An important consequence of the recognition that the quality of a trial may 
affect its results was to encourage improved standards of conduct and reporting of 
randomized trials. In particular the CONSORT statement (see Moher, Schulz and 
Altman (200 1 ) , www.consort-statement.org and Chapter 34), which was publ ished 
in 1 996 and updated in 200 1 ,  aims to standardize the reporting of trials in medical 
journals. 

Causes of bias: publication bias 

In general ,  a study showing a beneficial effect of a new treatment is more l ikely to 
be considered worthy of publication than one showing no effect .  There is a 
considerable bias that operates at every stage of the process, with negative trials 
considered to contribute less to scientific knowledge than posit ive ones: 
• those who conducted the study are more likely to submit the results to a peer

reviewed journal; 
• editors of journals are more l ikely to consider the study potential ly worth 

publishing and send it for peer review; 
• referees are more likely to deem the study suitable for publication.  
This situation has been accentuated by two factors: first that studies have often 
been too small to detect a beneficial effect even if one exists (see Chapter 35 )  and 
second that there has been too much emphasis on 'significant' results ( i .e .  P < 0.05 
for the effect of interest) .  

A proposed solution to the problem of publication bias is to establish registers 
of all trials in a particular area, from when they are funded or established. It has 
also been proposed that journals consider studies for publication 'blind' of the 
actual results ( i .e .  based only on the l i terature review and methods) .  It is also clear 
that the active discouragement of studies that do not have power to detect a 
cl inically important effect would alleviate the problem. Publication bias is a lesser 
problem for larger stud ies, for which there tends to be general agreement t hat the 
results are of interest, whatever they are .  

Funnel plots to examine bias in  meta-analysis 

The existence of publication bias may be examined graphically by the use of 
' funnel plots' . These are simple scatter plots of the treatment effects estimated 
from individual studies on the horizontal axis and the standard error of the 
treatment  effect ( reflecting the study size) on the vertical axis. The name 'funnel 
plot' is  based on the fact that the precision in the estimation of the underlying 
treatment effect will increase as the sample size of component studies increases. 
Effect estimates from small studies will therefore scatter more widely at the 
bottom of the graph, with the spread narrowing among larger studies. I n  the 
absence of bias the plot will resemble a symmetrical inverted funnel, as shown in 
panel (a) of Figure 32.2 .  
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Hypothetical funnel plots: (a) symmetrical plot in the absence of bias (open circles indicate 
smaller studies showing no beneficial effects); (b) asymmetrical plot in the presence of publ ication bias 

(smaller studies showing no beneficial effects are missing); (c) asymmetrical plot in the presence of bias due 

to low methodological qual ity of smaller studies (open circles indicate small studies of inadequate qual ity 

whose results are biased towards larger beneficial effects). 
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Relative measures of treatment effect ( risk ratios or odds ratios) are plotted on a 
logarithmic scale. This is important to ensure that effects of the same magni tude 
but opposite direct ions, for example risk ratios of 0 .5  and 2, are equidistant from 
1 (corresponding to no effect) .  Treatment effects have general ly been plotted 
against sample sizes. However, the statistical power of a trial is determined both 
by the total sample size and the number of participants developing the event of 
interest .  For example, a study with 1 00 000 patients and ! O events is  less l ikely to 
show a statistical ly significant effect of a treatment than a study with 1 000 patients 
and 1 00 events. The standard error of the effect estimate, rather than total 
sample size, has therefore been increasingly used in funnel plots (Sterne and 
Egger 200 1 ) . 

I f  there is bias, for example because smaller st udies showing no statistically 
significant effects (open circles in the figure) remain unpublished, then such 
publication bias will lead to an asymmetrical appearance of the funnel plot with 
a gap in  the right bottom side of the graph (panel (b) of Fig. 32.2). In this situation 
the combined effect from meta-analysis will overest imate the t reatment's effect . 
The more pronounced the asymmetry, the more l ikely it is that the amount of bias 
wil l be substantial .  

What factors can lead to asymmetry in funnel plots? 

Publication bias has long been associated with funnel plot asymmetry, but it is  
important to real ise that publ ication bias is not the only cause of funnel plot 
asymmetry. We have already seen that trials of lower qual i ty may yield exagger
ated estimates of treatment effects. Smaller studies are, on average, conducted and 
analysed with less methodological rigour than larger studies, so that asymmetry 
may also result from the over-estimation of treatment effects in smaller studies of 
lower methodological quality (panel (c) of Fig. 32 .2 ) .  

Funnel p lot  asymmetry may have causes other than bias. Heterogeneity be
tween trials can also lead to funnel plot asymmetry if the true treatment effect is 
larger (or smaller) in the smaller trials because these are conducted, for example, 
among h igh-risk patients. Such trials will tend to be smaller, because of the 
difficulty in  recruiting such patients and because increased event rates mean that 
smaller sample sizes are required to detect a given effect. In  addition, in  some large 
trials, interventions may be implemented under routine conditions rather than in 
trial condit ions where it is possible to invest heavily in assuring al l  aspects are 
perfect. This will result in relatively lower treatment effects .  For example, an 
asymmetrical funnel plot was found in a meta-analysis of trials examining the 
effect of geriatric assessment programmes on morta lity. An experienced consult
ant geriatrician was more l ikely to be actively involved in the smaller trials and this 
may explain the larger treatment effects observed in these trials. 

Because publication bias is only one of the possible reasons for asymmetry, the 
funnel plot should be seen more as a means of examining 'small study effects' (the 
tendency for the smaller studies in a meta-analysis to show larger t reatment 
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effects ) .  The presence of funnel plot asymmetry should lead to consideration of 
possible explanations, and may bring into question the interpretation of the 
overal l  estimate of treatment effect from a meta-analysis. 

Statistical tests for funnel plot asymmetry 

Symmetry or asymmetry is genera lly defined in formally, through visual examin
ation, but different observers may interpret funnel plots differently. More 
formal statistical methods to examine associations between the studies' effects 
and their sizes have been proposed . Begg and Mazumdar ( 1 994) proposed 
an adjusted rank correlation test for publication bias which involves calculation 
of the rank correlation between the treatment effect and its estimated standard 
error (or, equivalently, variance) in each study. Egger et al. ( 1 997a) proposed 
a l inear regression test in which the standardized treatment effect from each study, 
that is the treatment effect divided by its standard error, is  regressed against the 
precision of the treatment effect .  For binary outcomes, the regression equation is: 

y; = log(OR;)/s .e .  [ log(OR;)] = log(OR;) x Jw; 

x; = l /s .e .  [log(OR;)] = Jw; 

and evidence for bias is found if the intercept f3o differs from zero . 
This test is equivalent to a regression of the log odds ratio against standard 

error (Sterne et al. 2000). This can be seen by multiplying the regression equation 
above by s.e. [ log (OR;)], which gives: 

log(OR;) = /30 x s.e. Qog(OR;)] + /31 

where the regression accounts for between-subject heterogeneity by weighting 
according to the inverse of the variance of log(OR;) .  The greater the association 
between log(OR;) and s.e. [log(OR;)] , measured by the size of the regression 
coefficient /30, the greater the evidence for funnel plot asymmetry. The test is 
therefore very closely related to a meta-regression of log(OR;)  on s.e. [log(OR;)] .  
There is thus the potential to include s .e . [log(OR;] together with other study 
characteristics ( for example measures of study quality) in a multiple meta-regres
sion to examine competing explanations for differences between studies. 

The power and sensitivity of these tests is not well established . It appears that 
the regression method is more powerful than the rank correlation method, but 
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that power is low unless the amount of bias is substantial and the number of 
studies in  the meta-analysis exceeds ten (Sterne et al. 2000) .  

3 2 . 8  M E T A - A N A L Y S I S  OF O B S E RVAT I O N A L  S T U D I E S  

Although the emphasis i n  this chapter has been on the meta-analysis o f  data from 
randomized trials, there are many questions which can only be addressed in 
observational studies. These include: 
• studies of the aetiology of disease (for example, does passive smoking cause lung 

cancer?); 
• evaluations of the effectiveness of interventions that have already been i ntro

duced, such as BCG vaccination; 
• evaluation of the effectiveness of an intervention on rare adverse outcomes, 

such as mortality, for which the sample size required for randomized control led 
trials might be prohibitive; 

• evaluation of the effectiveness of interventions that need to be applied on a 
widespread basis, such as a mass media campaign, and for which therefore it is 
not possible to have control groups; 

• evaluation of the effectiveness of interventions in populations other than those 
in which they were f irst evaluated. 

For this reason a substantial proportion of published meta-analyses are based on 
observational studies rather than on randomized trials. 

However, the issues involved in meta-analysis of observational studies are very 
different, and more difficult, than for the meta-analysis of randomized trials. In 
particular, the appropriate control of confounding factors is of fundamental 
importance in the analysis and interpretation of observational studies while, in 
contrast, appropriate randomization should mean that confounding is not a 
problem i n  trials ( providing that their size is large enough, see Chapters 34 and 
35). Other types of bias, for example recall bias, may also be of greater concern in 
observational studies than in  randomized trials. 

A striking example of the potential for meta-analyses of observational stud ies 
to give mislead ing results was given by Egger et al. ( 1 997b) .  They compared the 
results of six observational cohort studies of the association between intake of 
beta-carotene (a precursor of the antioxidant vitamin A) and cardiovascular 
mortality, with those from four randomized trials in which participants random
ized to beta-carotene supplements were compared with participants randomized 
to placebo. As can be seen from Figure 32 .3 ,  the cohort studies indicated a strong 
protective effect of beta-carotene while the randomized trials suggest a moderate 
adverse effect of beta-carotene supplementation . An individual's diet is  strongly 
associated with other characteristics associated with cardiovascular mortality ( for 
example physical activity and social class) and these results suggest that fai lure to 
contro l  for such factors, or other types of bias, led to the apparent protective effect 
of beta-carotene in the observational studies. 
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Fig. 32.3 Meta-analysis of the association between beta-carotene intake and cardiovascular mortality. 

Results from observational studies indicate considerable benefit whereas the findings from randomized 

controlled trials show an increase in  the risk of death. We are grateful to Matthias Egger for permission to 

reproduce the figure. 

This suggests that the statistical combination of studies should not, in genera l ,  
be  a prominent component of systematic reviews of observat ional stud ies, which 
should focus instead on possible sources of heterogeneity between studies and the 
reasons for these. 

3 2 . 9  C O N C L U S I O N S  

Systematic reviews and meta-analysis ( the quantitative analysis of such reviews) 
are now accepted as an important part of medical research. While the analytical 
methods are relatively simple, there is stil l controversy over appropriate methods 
of analysis. System a tic reviews are substantial undertakings, and those conducting 
such reviews need to be aware of the potential biases which may affect their 
conclusions. However, the explosion in medical research information and the 
availability of reviews on-line mean that synthesis of research findings is l ikely 
to be of ever increasing importance to the practice of medicine. 
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3 3 . 1  I N T R O D U CT I O N :  BAY E S I A N  I N F E R E N C E  

I n  this chapter we give a brief description of the Bayesian approach to statistical 
inference, and compare it to the frequentist approach which has been used in the 
rest of the book. The Bayesian approach is based on Bayes' formula for relating 
conditional probabilities ( see Chapter 1 4) :  

. b (B  
. 

A) _ prob (A given B )  x prob (B )  
pr o given -

prob (A) 

We have seen that  a statistical model specifies how the probabil ity d istribution 
of an outcome variable (the data) depends on model parameters. For example, 
consider a trial of the effect of thrombolysis on the risk of death up to 1 year after 
a myocardial infarction. The data are the number of patients and number of 
deaths in each group, and the model parameters are the risk of death in the 
control group, and the risk ratio comparing the risk of death in  patients given 
thrombolysis with the risk of death in the control group. In Chapter 28 we 
explained that the model parameters are fitted using the maximum l ikelihood 
approach . This is  based on calculating the conditional probabil i ty of the observed 
data given model parameters. 

The Bayesian approach to statistical inference starts with a prior belief a bout the 
l ikely values of the model parameters, and then uses the observed data to modify 
these. We wil l denote this prior belief by prob (parameters) .  Bayes' formula 
provides the mechanism to update this belief in the l ight of t he data: 

prob (model parameters given data) 

prob (data given model parameters) 
x prob (parameters) 

prob (data) 

The prior bel ief concerning the values of the parameters is  often expressed in terms 
of a probabil i ty distribution, such as a normal or binomial distribution, represent-
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ing a range of possible values, rather than as single values. This is called the prior 

distribution. The probability distribution of the model parameters given the data is 
known as the posterior distribution. 

3 3 . 2  C O M P A R I S O N  O F  B AY E S I A N  A N D  F R E Q U E N T I S T S T AT I S T I C A L  

I N F E R E N C E  

I n  this book we have concentrated on the frequentist approach to statistical 
inference, in which we think of probabil ity in terms of the proportion of t imes 
that an event would occur in a large number of similar repeated trials. In frequen
tist statistical inference, we think of model parameters ( for instance the risk ratio 
for the effect of thrombolysis on the risk of death following heart attack, com
pared to placebo) as fixed . We use the data to make inferences about model 
parameters, via parameter estimates, confidence intervals and P-values. 

In the Bayesian approach our inferences are based on the posterior probabil i ty 
d istribution for the model parameters. For example, we might derive a 95 % credible 

interval ,  based on the posterior d istribution, within which there is 95 % probabil ity 
that the parameter l ies. Box 33 . 1 compares the Bayesian and frequentist approaches 

BOX 33. 1 COMPARISON OF FREQUENTIST AND BAYESIAN APPROACHES TO 

STATISTICAL INFERENCE 

Frequentist statistics 

We use the data to make infer
ences about the true (but un
known) population value of the 
risk ratio .  

The 95 % confidence interval gives 
us a range of values for the popu
lation risk rati o  that is  consistent 
with the data. 95 % of the times we 
derive such a range it will contain 
the true (but unknown) popula
tion value. 

The P-val ue is the probabil ity of 
gett ing a risk ratio at least as far 
from the null value of I as the one 
found in our study. 

Bayesian statistics 

We start with our prior op1111on 
about the risk ratio, expressed as a 
probability distribution .  We use the 
data to modify that opinion (we der
ive the posterior probabil i ty d istribu
tion for the risk ratio based on both 
the data and the prior distribution) .  

A 95 % credible interval i s  one that 
has a 95 % chance of containing the 
population risk ratio .  

The posterior d istribution can be 
used to derive direct probabi l i ty 
statements about the risk ratio, e .g .  
the probabil ity that the drug in
creases the risk of death. 
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to statistical inference. See also the book by Royall ( 1 997) ,  which describes and 
compares different approaches to statistical inference. 

I f  our prior opinion about the risk ratio is very vague (we consider a very wide 
range of values to be equally l ikely) then the results of a frequentist analysis are 
very similar to the results of a Bayesian analysis-both are based on the l ikelihood 
for the data. This is because a vague prior distribution wil l have l ittle infl uence on 
the posterior probabil ity, compared to the influence of the data: 
• the 95 % confidence interval is  the same as the 95 % credible interval, except that 

the latter has the interpretation often incorrectly ascribed to a confidence 
interval; 

• the ( I -sided ) P-value is the same as the probabi l ity that the drug increases the 
risk of death (assuming that we found a protective effect of the drug). 

However, the two approaches can give very different results i f  our prior opinion is  
not vague relative to the amount of information contained in the data .  This issue is  
at the heart of a long-standing argument between proponents of the two schools of 
statistical inference. Bayesians may argue that it is appropriate to take externa l  
information into account by quantifying th is  as prior belief. Frequentists, on the 
other hand, may argue that our inferences should be made based only on the data. 
Further, prior belief can be difficult to quantify .  For example, consider the 
hypothesis that a particular exposure is associated with the risk of a particular 
cancer. In quantifying our prior belief, how much weight should be given to 
evidence that there is a biologically plausible mechanism for the association, 
compared to evidence that international differences in disease rates show some 
association with differences in  the level of the risk factor? 

In some situations, Bayesian inference allows a more natura l  way to consider 
consequences of the data than does frequentist reasoning. For example: 
• in a cl inical trial in which an interim analysis reveals that the estimated risk of 

disease is  ident ical in the treatment and control groups, Bayesian statistics could 
be used to ask the question 'What is the probability that there is a clinically 
important effect of treatment, given the data currently accrued?' This question 
has no meaning in frequentist statistics, since the effect of treatment is treated as 
a fixed but unknown quantity; 

• in a trial whose aim is to examine whether a new treatment ( B )  is at least as 
cl inically effective as an existing treatment (A), i t  is  perfectly meaningful, in  a 
Bayesian framework, to ask 'What is the probability that drug B is at least as 
good as drug A?' In contrast, frequent ist statistics tends to focus on testing the 
evidence against the null hypothesis that the effect of drug B is the same as the 
effect of drug A. 

3 3 . 3  M A R K OV C H A I N  M O N T E - C A R L O  ( M C M C ) M ET H O D S  

In  recent years there has been a resurgence o f  interest i n  Bayesian statistics. This 
has been based less on arguments about approaches to statistical inference than on 
a powerful means of estimating parameters in complex statistical models based on 
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the Bayesian approach. The idea is that if we know the values of all the parameters 
except for one, then we can derive the conditional distribution of the unknown 
parameter, conditional on the data and the other (known ) parameter val ues. Such 
a conditional d istribution can be derived for each parameter, assuming that the 
values of all the others are known . 

The Markov Chain Monte-Carlo (MCMC) procedure is used to generate a value 
for each parameter, by sampling randomly from its conditional d istribution. This 
then acts as the 'known' value for that parameter. This process is carried out 
iteratively. A new parameter value is sampled from the d istribution of each 
parameter in turn, and is used to update the 'known' val ues for the conditional 
d istribution of the next parameter. The phrase 'Markov Chain' refers to the fact 
that the procedure is based only on the last sampled values of each parameter, 
while 'Monte-Carlo' refers to the random sampling of the parameter values. 

After a suitable 'burn in' period (e.g. 1 0 000 iterations), the dependence of the 
procedure on the init ial chioce of the parameter values is lost . The parameter 
values generated over the next ( say) I 0 000 iterations are then recorded . These 
correspond to the posterior distribution of the parameters, based on the data and 
the prior probabi li t ies. The high speeds of modern desktop computers mean that 
such computationally intensive procedures can be run in reasonable amounts of 
t ime, although they are not as quick as standard (maximum-l ikelihood ) methods. 

MCMC methods can thus be used as an alternative to maximum-likelihood 
estimation, for models such as random-effects logistic regression where maximum
l ikelihood estimat ion is computationally difficult . This can be carried out using 
specia lised computer software such as BUGS (available at www.mrc-bsu .cam. 
ac.uk/bugs), which stands for Bayesian inference Using Gibbs Sampling and 
allows users to specify a wide range of statistical models which are then estimated 
using MCMC. Note, however, that both model specification and use of the 
MCMC estimation procedure currently require considerably more technical 
knowledge than is needed to use a standard statist ical software package. 





PART F 

ST U D Y  D ESI G N , A N A LYSIS A N D 
I N T E R P R E TATIO N 

Our aim in this final part of the book is to facil itate the overal l  planning and 
conduct of an analysis, and to cover general issues in the interpretation of study 
results . We start in Chapter 34 by explaining how to link the analysis to study 
design. We include guides to aid the selection of appropriate statistical methods 
for each of the main types of study, and draw attention to design features that 
influence the approach to analysis. 

In the next three chapters, we address three different issues related to interpret
ation of statist ical analyses. Chapter 35 tackles the calculation of sample size, and 
explains its fundamental importance in the interpretation of a study's results. 
Chapter 36 covers the assessment and implications of measurement error and 
mjsclassification in  study outcomes and exposures. Chapter 37 outl ines the differ
ent measures that are used to assess the impact of an exposure or of a treatment on 
the amount of disease in  a population. 

Finally, Chapter 38  recommends general strategies for statistical analysis. 
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3 4 . 1  I N T R O D U CT I O N  

The main focus o f  this book i s  on the statistical methods needed to analyse the 
effect of an exposure (or treatment) on an outcome. In previous parts, we have 
categorized these methods according to the types of outcome and exposure (or 
treatment) variables under consideration. These are summarized in the inside 
covers of the book. In this chapter, we now look more general ly at  how to l ink 
the analysis to the study design. I n  particular, we: 
• summarize the range of methods available for each of the following: 

randomized controlled trials; 
other designs to evaluate the impact of. an in tervention; 
cross-sectional and longitudinal studies; 
case-control stud ies; 

• highlight the key elements of each design that determine the choice of statist ical 
method(s) ;  

• discuss any specific issues that need to be considered in the interpretation of the 
results; 

• draw attention to design-specific considerations that need to be bui lt  into the 
analysis plan, in  addition to the general strategies for analysis outl ined in 
Chapter 38 .  

Detailed d iscussions of the  design of  different types of study are outside the  scope 
of this book, but are available in the following textbooks: 
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Clinical trials: Friedman et al. ( 1 998) and Pocock ( 1 983 )  
Intervent ions in developing countries: Smith & Morrow ( 1 996) 
Cluster randomized trials: Donner & Klar (2000) and Ukoumunne et al. ( 1 999) 
Case-control studies: Breslow & Day ( 1 980) and Schlesselman & Stolley ( 1 982)  
General epidemiology: Gordis (2000), Rothman (2002) ,  Rothman & Greenland 

( 1 998)  and Szklo & Nieto (2000) 

3 4 . 2  R A N D O M I Z E D  C O N T R O L L E D  T R I A L S  

Randomized controlled trials ( RCTs) provide the best evidence o n  the effect ive
ness of treatments and health care interventions. Their key elements are: 
• The comparison of a group receiving the treatment (or intervention) under 

evaluation, with a control group receiving either best practice, or an inactive 
intervention. 

• Use of a randomization scheme to ensure that no systematic differences, in  either 
known or unknown prognostic factors, arise during allocation between the 
groups. This should ensure that estimated treatment effects are not biased by 
confounding factors (see Chapter 1 8) .  

• Allocation concealment: successful implementation of a randomization scheme 
depends on making sure that those responsible for recruiting and allocating 
participants to the trial have no prior knowledge about which i ntervention they 
wil l receive. This is called allocation concealment. 

• Where possible, a double blind design, in  which neither participants nor study 
personnel know what treatment has been received until the 'code is broken' 
after the end of the trial . This is achieved by using a placebo, a preparation 
indistinguishable in al l respects to that given to the treatment group, except for 
lacking the active component. I f  a double-bl ind design is not possible then 
outcome assessment should be done by an investigator blind to the treatment  
received. 

• An intention to treat analysis in which the treatment and control groups are 
analysed with respect to their random allocation, regardless of what happened 
subsequently ( see below) .  

I t  is crucial that  RCTs are not  only well designed but also wel l  conducted and 
analysed if t he possibility of systematic errors is to be excluded. It i s  also essential 
that they are reported in  sufficient detail to enable readers to be able to assess the 
quality of their conduct and the validity of their results. Unfortunately, essential 
details are often lacking. Over the last decade concerted attempts to improve the 
quality of reporting of randomized controlled trials resulted in the 1 996 
CONSORT statement ( Begg et al. ,  1 996), with a revised version in  200 1 ( Moher 
et al. , 200 1 ) . CONSORT stands for CONsolidated Standards Of Reporting Trials. 
The statement consists of a prototype flow diagram for summarizing the different 
phases of the tr ial ,  with the numbers involved in each (Figure 34. 1 ), and a checklist 
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of items that it is essential for investigators to report (Table 34. 1 ) . Details of its 
rationale and background together with a full description of each component can 
be found on the website http://www.consort-statement.org/. 

.... c: <V E 
e c: UJ 

Assessed for 
e l ig ib i l ity (n = . . .  ) 

Exc l uded (n = . . .  ) 
Not meeting 
i nclusion criteria 
(n = . . .  ) 

Refused to participate 
(n = . . .  ) 
Other reasons (n = . . .  ) 

Randomized (n = . . .  ) 

� � 
Al located to i ntervention Al located to intervention 
(n = . . .  ) (n = . . .  ) 

Received a l located Received a l located 
intervention (n = . . .  ) intervention (n = . . .  ) 
D id not receive a l located Did not receive a l located 
intervention intervention 
(give reasons) (n = . . .  ) (give reasons) (n = . . .  ) 

I I 
Lost to fo l low-up Lost to fol low-up 
(give reasons) (n = . . .  ) (give reasons) (n = . . .  ) 

D iscont inued i ntervention Discontinued intervention 
(give reasons) (n = ... ) (give reasons) (n = . . .  ) 

I I 
Ana lysed (n = . . .  ) Ana lysed (n = . . .  ) 

Exc luded from ana lysis Excl uded from ana lysis 
(give reasons) (n = .. .  ) (give reasons) (n = . . .  ) 

Fig. 34.1 Revised template of the CONSORT diagram showing the flow of participants through each stage 

of a randomized trial, reprinted with permission of the CONSORT group. 

Analysis plan 

In this section we wil l focus in particular on the features of the CONSORT 
statement pertinent to the analysis plan, key stages of which are outl ined in  
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Table 34.1  The revised CONSORT statement for reporting randomized trials: checklist of items to include when 

reporting a randomized trial, reprinted with permission of the CONSORT group. 

Paper section and topic 

TITLE AND ABSTRACT 

INTRODUCTION 

Background 

METHODS 

Participants 

Interventions 

Objectives 

Outcomes 

Sample size 

Randomization: 

Sequence generation 

Allocation concealment 

Implementation 

Blinding (masking) 

Statistical methods 

RESULTS 

Participant flow 

Recruitment 

Baseline data 

Numbers analysed 

Outcomes and estimation 

Item no. Descriptor 

How participants were al located to interventions (e.g. 'random allocation', 

'randomized', or 'randomly assigned') 

2 Scientific background and explanation of rationale 

3 Eligibil ity criteria for participants and the settings and locations where the 

data were collected 
4 Precise details of the interventions intended for each group and how and 

when they were actually administered 

5 Specific objectives and hypotheses 

6 Clearly defined primary and secondary outcome measures and, when 

appl icable, any methods used to enhance the quality of measurements 

(e.g. multiple observations, training of assessors, etc.) 
7 How sample size was determined and, when applicable, explanation of any 

interim analyses and stopping rules 

8 Method used to generate the random al location sequence, including details 

of any restriction (e.g. blocking, stratification) 

9 Method used to implement the random a llocation sequence (e.g. numbered 

containers or central telephone), clarifying whether the sequence was 

concealed until interventions were assigned 

1 0  Who generated the allocation sequence, who enrolled participants, and 

who assigned participants to their groups 

1 1  Whether or not participants, those administering the interventions, and 

those assessing the outcomes were blinded to group assignment. 

When relevant, how the success of blinding was evaluated 

1 2  Statistical methods used t o  compare groups for primary outcome(s); 

methods for additional analyses, such as subgroup ana lyses and 

adjusted analyses 

1 3  Flow of participants through each stage (a diagram is strongly 

recommended). Specifically, for each group report the numbers of 

participants randomly assigned, receiving intended treatment, 

completing the study protocol, and analysed for the primary outcome. 

Describe protocol deviations from study as planned, together with reasons 

1 4  Dates defining the periods of recruitment and follow-up 
1 5  Baseline demographic and clinical characteristics of each group 

1 6  Number of participants (denominator) in  each group included i n  each 

analysis and whether the analysis was by 'intention-to-treat'. State the 

results in absolute numbers when feasible (e.g. 1 0  /20, not 50%) 
1 7  For each primary and secondary outcome, a summary of results for each 

group, and the estimated effect size and its precision (e.g. 95% 

confidence interval) 

(continued) 
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Paper section and topic Item no. Descriptor 

Ancillary analyses 

Adverse events 

DISCUSSION 

Interpretation 

Generalizabil ity 

Overall evidence 

1 8  Address multiplicity by reporting any other ana lyses performed, including 

subgroup analyses and adjusted analyses, indicating those pre-specified 

and those exploratory 

1 9  All important adverse events o r  side effects i n  each intervention group 

20 Interpretation of the results, taking into account study hypotheses, sources 

of potential bias or imprecision and the dangers associated with 

multipl icity of analyses and outcomes 

21  Generalizabil ity (external validity) of  the trial findings 

22 General interpretation of the results in the context of current evidence 

Table 34.2 .  Although CONSORT has been designed primarily for two-group 
paral lel designs, most of it is  also relevant to a wider class of trial designs, such as 
equivalence, factorial, cl uster and crossover trials. Modifications to the CONSORT 
checklist for reporting trials with these and other designs are in preparation. 

Tab le  34.2 Outline of  analysis p lan  for a randomized controlled trial .  

1 .  Complete flow diagram showing number of participants involved at  each phase of  the trial 

2. Summarize baseline characteristics of trial population 

3. Compare treatment groups with respect to baseline variables - focus on subset of variables thought to be 

associated with main outcome(s). Avoid formal tests of the null hypothesis of no between-group differences, 

since the nul l hypothesis must be true if the randomization was done properly 

4. Conduct simple analysis of main outcome(s) by intention to treat 
(a) Present the estimated effect of treatment together with a Cl and test of the nul l  hypothesis of no treatment 

effect 

(b) Consider sensitivity analyses examining the possible effect of losses to follow-up, if these might affect the 

treatment effect es ti mate 

5. Repeat analysis including adjustment for baseline variables if appropriate 

6. Carry out any subgroup analyses if there is an a priori justification 

7. Analyse side effects and adverse outcomes 

8. Analyse secondary outcomes 

Participant flow 

An important first stage of the analysis is to work out the flow of the number of 
participants through the four main phases of the trial: enrolment, al location to 
intervention groups, follow-up and analysis, as shown in Figure 34. 1 .  In particu
lar, i t  is important to note the number excluded at any stage and the reasons for 
their exclusion. This information is crucial for the following reasons: 
• Substantial proportions lost a t  any stage have important implications for the 

external validity of the study, since the resulting participants may no longer be 
representative of those eligible for the intervention. 
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• Any imbalance in losses between treatment groups has implications for the 
internal validity of the study, since they may lead to non-random differences 
between the treatment groups which could influence the outcome. 

• Knowing the difference between the number al located to receive an interven
tion, and number who actually received it (and/or adequately adhered to i t ) ,  is 
important for the interpretation of the estimated effect, as explained below 
under ' intention to treat analysis' . 

Analysis of basel ine variables 

' Baseli ne' information collected at enrolment is used in the analysis of a trial in the 
following ways: 
1 To describe the characteristics of the trial participants, which is  essential for 

assessing the generalizibility of the results. 
2 To demonstrate that the randomization procedure has successfully led to com

parabi l i ty between trial groups. 
3 To adjust treatment effects for variables strongly related to the outcome (see 

below) .  
4 To carry out  subgroup analysis (see below).  
In their review, 'Subgroup analysis and other (mis)uses of basel ine data in  clin ical 
trials', Assmann et al. (200 1 )  found that the first two objectives are often confused, 
and that the approach to the second is often methodological ly flawed. They 
recommend that :  
• A general and detailed description is given of the tr ial participants,  but that the 

analysis of comparabil i ty between groups should be restricted to a few variables 
known to be strong predictors of the primary outcome(s) .  

• Significance tests for baseline differences are inappropriate, since any differ
ences are either due to chance or to flawed randomization. In addition, a non
significant imbalance of a strong pred ictor will have more effect on the results 
than a significant imbalance on a factor unrelated to the outcome. 

Intention to treat analysis 

In an ' intention to treat' analysis, part1c1pants are analysed according to their 
original group assignment, whether or not this is the intervention t hey actually 
received, and whether or not they accepted and/or adhered to the intervention. 
Alternatively, analysis can be based on actual intervention received, with criteria 
for exclusion if  inadequate adherence to the intervention was achieved. This 
is sometimes known as a 'per protocol' analysis. The primary analysis of a 
RCT should always be an intention to treat analysis, since it avoids the possibil ity 
of any b ias associated with loss, mis-allocation or non-adherence of participants. 
For example, consider a placebo-controlled trial of a new drug with unpleasant 
side-effects. If the sickest patients are unable to take the new drug, they 
may withdraw from the assigned treatment. Such problems will not affect t he 
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placebo group, and therefore a per-protocol analysis would give a biased result by 
comparing the less sick patients in the drug group with all patients in the placebo 
group. 

If there is a substantial difference between those allocated to receive an inter
vent ion and those who actually receive it (and adequately adhere to i t ) ,  then we 
recommend that in  addition analyses are carried out adjusting for actual treatment 
received, and that the results are compared with the intention to treat analysis. A 
valid method to correct for non-adherence to treatment in randomized trials was 
developed by Robins and Tsiatis ( 1 99 1  ), but has not been widely used in practice, 
partly because i t  is  conceptually difficult .  However, software implementing the 
method is now available (White et al. 2002) .  It is important to report the numbers 
involved, and the reasons for the losses in order to assess to what extent the 
intention to treat analysis may lead to an underestimate of the efficacy of the 
intervention under ideal circumstances, and to what extent the per protocol 
analysis may be b iased . 

Adjustment for basel ine variables 

The analysis of the main outcome(s) should always start with simple unadjusted 
comparisons between treatment groups. For most randomized controlled trials, 
this is  all that should be done. We recommend adjustment for covariates measured 
at baseline only in the following circumstances: 
• Where there is  clear a priori evidence about which baseline factors are l ikely 

to be strongly related to the outcome. Even where strong predictors 
exist, adjustment for them in the analysis is only necessary if the outcome is 
numerical .  

• In  particular, where the outcome is numerical and where a baseline measure
ment of it has been taken. An example would be a trial of an anti-hypertensive 
drug, where blood pressure is measured at baseline and following treatment. I n  
this case the baseline measurement i s  l ikely t o  be strongly correlated with the 
outcome, and including it as a covariate in the analysis improves the precision 
of the treatment effect (see Section 29 .8 ) .  Note that this is a better approach 
than taking differences from the baseline as the outcome variable, since the 
latter tends to overcorrect (see Snedecor & Cochran, 1 989) .  

• Where the tr ia l  is  sufficiently small that an imbalance sufficiently large to bias 
the treatment effect is possible. (Such a situation may occur in cluster-random
ized trials; see below . )  

Note that: 
• The decision concerning covariates should not be made on the basis of statistic

ally signi ficant differences between the treatment groups at basel ine, although 
this is  often the practice (see above discussion on analysis of baseline variables ) .  

• I t  is  not necessary to adjust for centre in multi-centre studies, unless it is  a strong 
predictor of outcome and the proportion of patients in the t reatment group 
differs between centres. 
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Subgroup analyses 

I n  their review, Assmann et al. (200 1 )  found that t he use of subgroup analyses is  
widespread in cl inical trials, and often flawed. The choice of subgroups used is 
often not justified , their analysis is often inadequate and their resul ts are given 
undue emphasis. They note that of all the problems that have been identified in the 
conduct, analysis and reporting of clinical trials, subgroup analysis remains the 
most over-used and over-interpreted. 
• Subgroup analyses should only be conducted if there is a clear a priori reason to 

expect the treatment effect to differ between different groups of patients, such as  
between males and females, or between different age groups. Only a few 
predefined subgroups should be considered and analysis restricted to the main 
outcomes . 

• They should include formal tests for interaction, as described in Section 29.5,  
and should not be based on inspection of subgroup P-values. A particularly 
common error is to assume that a small P-value in  one subgroup, but not in 
another, provides evidence that the treatment effect differs between the sub
groups. If the subgroups are of different sizes then this situation may arise even 
if the subgroup treatment effects are identical !  

• In addit ion, in multi-centre trials i t  may be useful to present the results by centre 
as wel l  as overall ,  as a means of data quality and consistency checking between 
centres. The results of such analyses may be presented in a forest plot ( see 
Chapter 32). However, this should not lead to undue emphasis being placed on 
any apparent differences seen, unless these are supported by strong evidence 
supporting their plausibility. 

Crossover trials 

Crossover trials are trials in which both treatments (or the active treatment and the 
placebo control ) are given to each patient, with the order of allocation decided at 
random for each patient. They are suitable in situations such as trials of analgesics 
for pain relief or therapies for asthma, where outcomes can be measured at the end 
of successive t ime periods, and where there is unlikely to be a carry-over effect of 
the first treatment into the period when the second treatment is being given. To 
address this issue, such trials may incorporate a 'washout' period between the 
periods when treatments under investigation are administered . 

The main advantage of crossover trials is that by accounting for between
patient variabil ity in the outcome they may be more efficient than a corresponding 
trial in which treatments are randomly allocated to different ind ividuals (parallel 

group trial) .  The analysis of such trials should take account of the design by using 
methods for paired data. For numerical outcomes, the mean difference between 
each patient's outcomes on the first and second treatment should be analysed (see 
Section 7 .6) ,  and the standard deviation of the mean differences should always be 
reported, to facil i tate meta-analyses of such trials, or of trials using both crossover 
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and para l lel group designs. For binary outcomes, methods for matched pairs 
should be used (see Chapter 2 1 ) . 

Cluster randomized trials 

The development, and the major use, of RCTs is in the evaluation of treatments or 
medical intervent ions ( such as vaccines) applied at the ind ividual level .  In recent 
years, however, the use of RCTs has extended to the evaluation of health service 
and public health intervent ions. This has led to the development of cluster ran

domized trials, in which randomization is applied to cl usters of people rather than 
individuals, either because of the nature of the intervention,  or for logistical 
reasons. Some examples are :  
• Evaluation of screening of hypertension among the elderly in  the U K  i n  which 

the unit of randomization was the GP practice. 
• Evaluation of t he impact on HIV transmission in Tanzania of syndromic 

management of sexually transmitted diseases, where the unit of randomization 
was STD clinics and their catchment populations. 

• Evaluation in  Glasgow of the impact on adolescent sexual  behaviour of a sex 
education programme delivered through school, in which the schools were the 
uni t  of randomization. 

• Evaluation in Ghana of the impact of weekly vitamin A supplementation on 
maternal mortality, where the unit of randomization is  a cluster of  about 1 20 
women, the number that a fieldworker can visit in a week. 

Three essential points to note are that: 
1 Any clustering in  the design must be taken into account 1 11 the analysis, as 

described in  Chapter 3 1 .  
2 Because the number of clusters is often relatively small , a cluster randomized 

design may not exclude the possibility of imbalance in basel ine characteristics 
between the treatment and control groups and careful consideration should be 
given to measurement of known prognostic factors at baseline and whether it is 
necessary to adjust for their effects in the analysis. 

3 A cluster randomized trial needs to include more individuals than the corres
ponding individually randomized trial . Sample size calculations for cl uster 
randomized trials are described in Chapter 35 .  

Choosing the statistical method to use 

Table 34.3 provides a guide to selecting the appropriate statistical method to use. 
It shows how this depends on:  
• the type of outcome; 
• whether adjustment for baseline variables is  needed; 
• whether subgroup analyses are being conducted ; 
• and, in the case of survival outcomes, whether the proportional hazards as

sumption is satisfied . 



Table 34.3 Analysis of clinical trials/intervention studies: summary of methods. 

Data displays 

Measure of the effect of 

treatment 

Adjustment for baseline 

variables 

Analysing for different 

treatment effects in different 

subgroups 

Special cases 

Numerical 

Mean outcome in each group, 

with standard error 

D ifference between means 

t-test 

Multiple linear regression 

Type of outcome 

Binary Rate Survival time 

2 x 2 table, or k x 2 table for Number of events, person-years Number of events and 
a trial with k treatment groups and rate (with confidence person-years in each group 

Risk difference/risk ratio/odds 

ratio (OR): z-testix2 test 

Number needed to treat (see 

Chapter 37} 

Mantel-Haenszel methods 

Logistic regression 

interval) in each group 

Rate ratio 

z-test 

Mantel-Haenszel methods 

Poisson regression 

Kaplan-Meier survival curves 

Mantel-Cox hazard ratio 

Log rank test 

Cox regression 

Include interaction terms in regression model Also check for non proportional 

hazards (i.e. whether effect of 

treatment changes with time) 

Cluster randomized trial or other clustering of outcome data (see Chapter 31 for methods) 

Crossover trials (use methods for matched data) 
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In addition, it highlights two special cases that need to be considered : 
• whether the data are clustered, either in group al location (cluster randomized 

trials ) ,  or in outcome measurement ( repeated measures in longitudinal stu
dies/mul tiple measures per subject), and 

• crossover trials, where for each patient, treatment and control outcomes are 
matched. 

Details of the methods can be found in the relevant sections of Parts B-E. 

3 4 . 3  O T H E R  D E S I G N S  TO E V A L U A T E  I N T E R V E N T I O N S  

As discussed in Section 32 .8 ,  while the large-scale, randomized, control led trial is 
the 'gold standard' for the evaluation of interventions, practical (and ethical )  
considerations may preclude i t s  use. In this section, we sununarize the alternative 
evaluation designs available, and the analysis choices involved (see Kirkwood et 
al. , 1 997) .  Essentially, we have one or more of three basic comparisons at our 
disposal in order to evaluate the impact of interventions. These are: 
1 The pre-post comparison involves comparing rates of the outcome of interest in 

several communities before the intervention is introduced (pre-intervention), 
with rates in the same communities after they have received the intervention 
(post-intervention) .  Such a comparison clearly requires the collection of base
l ine data. The plausibility of any statement attributing an impact to the inter
vention will be strengthened if i t  is demonstrated that both the prevalence of the 
risk factor under intervention and the rate of adverse outcome have diminished 
fol lowing the intervention . However, pre-post comparisons alone, without ad
equate concurrent controls, rarely provide compelling evidence that an inter
vention has successful ly impacted on health, since changes in both the 
prevalence of risk factors and outcome are frequently observed to occur over 
time in the absence of any intervention. I t  is therefore difficult to conclude that 
an observed change is due to the intervention and not due to an independent 
secular trend. An exception to this occurs when assessing mediating factors in 
programmes which seek to introduce into a community a new treatment or 
promote a product or behaviour that did not previously exist. It will, however, 
sti l l  be difficult to attribute any change in health status to the programme since 
the improvement may sti l l be part of a secular trend, rather than a direct 
consequence of the intervention. 

2 The intervention-control comparison following the introduction of the interven
tion is of course at the heart of a randomized contro l led trial, but this compari
son may be applied in a wider context. Thus the intervention versus control 
comparison may be randomized or non-randomized, matched or unmatched, 
double-blind or open. When the comparison is double-blind and randomized, 
with a large number of units, as is the case with an ideally designed randomized 
controlled trial, the plausibility of attributing any difference in outcome ob
served to the in tervention is high. In the absence of double-bl indness or 
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randomization on a reasonably large scale, inference concerning the impact of 
the intervention becomes more problematic and it becomes essential to control 
for potential confounding factors. 

3 Adopters versus non-adopters comparison: this is carried out at the ind ividual 
level even if the intervention is delivered at the community level .  I nd ividuals 
who adopt the intervention are compared with those who do not adopt 
the in tervention. Such a comparison is essentially a 'risk factor' study rather 
t han an 'impact' study in that it measures the benefit to an individual 
of adopting the intervention rather than the public health impact of the 
intervention in  the setting in  which it was implemented .  This would be the 
case, for example, in comparing STD incidence rates among condom 
users versus non-condom users following an advertis ing campaign. Great care 
needs to be taken to control potential confounding factors, since adopters and 
non-adopters of the intervention may differ in many important respects, includ
ing their exposure to infection. The magnitude of this problem may be assessed 
by a comparison of the non-adopters in the intervention area(s )  with persons in  
control areas. 

Each of these three comparisons has its merits. In the absence of a randomized 
controlled design, we recommend that an evaluation study include as many as 
possible, since they give complementary information. From Table 34.4 it can be 
seen that both a longitudinal design and a cross-sectional design with repeated 
surveys in principle allow measurement of all three of the basic types of compari
son. A single cross-sectional survey can make intervention-control comparisons 
and adopter versus non-adopter comparisons but not pre-intervention post-inter
vention comparisons. The longitudinal approach can more accurately establish 
outcome and exposure status and the time sequence between them, but is consider
ably more expensive and logistically complex than the cross-sectional approach.  
Randomized controlled trials usually measure outcomes using a longitudinal or 
repeated cross-sectional design in  order to maximize fol low-up. However, they are 
not restricted to do so and, where appropriate, outcome can be measured using a 
single cross-sect ional survey. For example, in a cluster randomized trial of the 
impact of a hygiene behaviour intervention, both hygiene practices and prevalence 
of diarrhoea could be ascertained through a single cross-sectional survey carried 

Table 34.4 Matrix showing the relationship between the 'classical' study designs and the three comparisons of 

interest in  evaluating an intervention. 

Data collection 

Longitudinal 

Cross-sectional (repeated) 

Cross-sectional (single round) 

Case-control 

Pre-post 

Yes 

Yes 

No 

No 

Comparisons 

Intervention-control 

Yes 

Yes 

Yes 

No 

Adopters vs non-adopters 

Yes 

Yes 

Yes 

Yes 
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out ,  say, six months after the in troduction of the intervention. A case-control 
evaluation can only yield an adopter versus non-adopter comparison .  

The choice of analysis methods for longitudinal and cross-sectional observa
tional stud ies and for case control studies are summarized in the next two sections. 

3 4 . 4  L O N G I T U D I N A L  A N D  C R O S S - S E CT I O N A L  S T U D I E S  

We now turn to the analysis of observational studies to investigate the association 
of an exposure with an outcome. In  this section we cover methods relevant  to 
cross-sectional surveys and longitudinal studies, and in the next section those 
relevant to case-control studies. 

A cross-sectional study is carried out at just one point in  time or over a short 
period of time. Since cross-sectional studies provide estimates of the features of a 
community at just one point in time, they are suitable for measuring prevalence 
but not incidence of d isease (see Chapter 1 5  for the definit ion of prevalence and 
Chapter 22 for the definit ion of incidence), and associations found may be difficult 
to in terpret .  For example, a survey on onchocerciasis showed that blind persons 
were of lower nutritional status than non-bl ind. There are two possible explan
ations for this association. The first is that those of poor nutritional status have 
lower resistance and are therefore more l ikely to become blind from onchocercia
sis. The second is that poor nutritional status is a consequence rather than a cause 
of the blindness, s ince blind persons are not as able to provide for themselves. 
Longitudinal data are necessary to decide which is the better explanation. 

As described in Chapter 22, in  a longitudinal study individuals are fol lowed over 
t ime, which makes it possible to measure the incidence of d isease and easier to study 
the natural history of disease. In some situations i t  is possible to obtain fol low-up 
data on births, deaths, and episodes of disease by continuous monitoring, for 
example by monitoring registry records in populations where registration of deaths 
is  complete. Occasionally the acquisition of data may be retrospective, being carried 
out from past records. More commonly it is prospective and, for this reason, 
longitudinal studies have often been alternatively termed prospective studies. 

Many longitudinal stud ies are carried out by conducting repeated cross-sectional 

surveys at fixed i ntervals to enquire about, or measure, changes that have taken 
place between surveys, such as births, deaths, migrations, changes in  weight or 
antibody levels, or the occurrence of new episodes of disease. The interval chosen 
wil l  depend on the factors being studied. For example, to measure the incidence of 
diarrhoea, which is  characterized by repeated short episodes, data may need to be 
collected weekly to ensure rel iable recal l .  To monitor child growth, on the other 
hand, would require only monthly or 3-monthly measurements. 

Choosing  the statistical method to use 

Table 34.5 provides a guide to the statistical methods available for the analysis of 
cross-sectional and longitudinal studies and Table 34.6 summarizes the possible 



Table 34.5 Analysis of observational studies: summary of methods. 

Type of exposure 

Binary 

Categorical 

Ordered categorical 

(dose-response effect) 

Numerical 

Adjustment for confounders 

Special cases 

Numerical 

Difference between means 

t-test 

Group means 

Analysis of variance 

Multiple linear regression 

Increase in mean/group 

Linear regression 

Regression coefficient 

(increase in mean/unit) 

Linear regression 

Multiple l inear regression 

Type of outcome 

Binary 

Risk ratio/odds ratio (OR) 
x2 test 

ORs against baseline 

Logistic regression 

Increase in log odds/group 

Logistic regression/x2 test for 

trend 

Regression coefficient 

(log odds ratio/un it) 

Logistic regression 

Mantel-Haenszel methods 

Logistic regression 

Rate ratio 

z-test 

Rate 

Rate ratios against baseline 

Poisson regression 

Increase in log rate/group 

Poisson regression 

Regression coefficient 

(log rate ratio/unit) 

Poisson regression 

Mantel-Haenszel methods 

Poisson regression 

Clustered data (see Chapter 31 for methods) 

(Repeated measures in longitudinal studies/Multiple measures per subject/ 

Family studies/Cluster sampling) 

Survival time 

Mantel-Cox hazard ratio 

Log rank test 

Hazard ratios against baseline 

Cox regression 

Increase in log hazard/group 

Cox regression 

Regression coefficient 

(log hazard ratio/unit) 

Cox regression 

Cox regression 

Non-proportional hazards 
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Table 34.6 Observational studies: guide to the appropriateness of types of outcome, for each study design. 

Study design Numerical 

Longitudinal (complete follow-up) Yes 

Longitudinal (incomplete follow-up) Yes* 

Longitudinal (repeated cross-sectional surveys) Yes** 

Cross-sectional Yes 

Case-control No 

* Methods beyond the scope of this book 

Type of outcome 

Binary 

Yes 

Yes* 

Yes**  

Yes 

Yes 

Rate 

Yes 

Yes 

Yes 

No 

No 

Survival time 

Yes 

Yes 

Yes 

No 

No 

** Analyse taking into account repeated measures of outcome, using methods for clustered data (see 

Chapter 3 1 ) . 

types of outcome according to the study design. The choice of which method to 
use is determined by: 
• the sampling scheme used to recruit participants into the study; 
• whether measures are made at a single point in time, continuously over time, or 

at  repeated points in t ime; 
• the types of the outcome and exposure variables. 
The bottom line of the guide h ighlights two special cases that need to be con
sidered: 
• whether the data are clustered, either because of the sampling scheme (cluster 

sampling or family studies), or in outcome measurement ( repeated measures in 
longitudinal studies/multiple measures per subject); and 

• in  the case of survival outcomes, whether the proportional hazards assumption 
is satisfied . 

Details of the methods can be found in the relevant sections of Parts B-E. 

Types of sampling scheme and their impl ications 

Occasionally a study includes the whole population of a confined area or insti
tution(s) , but more often only a sample is investigated. Whenever possible any 
selection should be made at  random. Possible schemes include: 
1 Simple random sampling: the required number of individuals are selected at 

random from the sampling frame, a l ist or a database of all individuals in the 
population. 

2 Systematic sampling: for convenience, selection from the sampling frame 
is sometimes carried out systematically rather than randomly, by taking 
individuals at regular intervals down the l ist, the starting point being 
chosen at random. For example, to select a 5 %, or I in 20, sample of the 
population the starting point is chosen randomly from numbers l to 20, 
and then every 20th person on the l ist is taken. Suppose 1 3  is the random 
number selected, then the sample would comprise individuals 1 3 , 33 ,  53, 73,  
93,  etc. 
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3 Stratified sampling: a simple random sample is taken from a number of dist inct 
subgroups, or strata, of the population in order to ensure that they are all 
adequately represented. If different sampling fractions are used in the different 
strata, simple summary statistics will not be representative of the whole popu
lation . Appropriate methods for the analysis of such studies use weights that are 
inversely proportional to the probabil ity that each individual was sampled, and 
robust standard errors (see Chapter 30) to correct standard errors. 

4 Multi-stage or cluster sampling: this is carried out in stages using the hierarchical 
structure of a population. For example, a two-stage sample might consist of fi rst 
taking a random sample of schools and then taking a random sample of 
children from each selected school. The clustering of data must be taken into 
account in the analysis. 

5 Sampling on the basis of time: for example, the 1 970 Bri tish Cohort Study 
( BCS70) is an ongoing follow-up study of all individuals born between 5th 
and 1 1 th April, 1 970 and stil l l iving in Britain . 

3 4 . 5  C A S E- C O N T R O L  S T U D I E S  

I n  a case-control study the sampl ing i s  carried out according t o  disease rather than 
exposure status. A group of individuals identified as having the d isease, the cases, 

is compared with a group of individuals not having the disease, the controls, with 
respect to their prior exposure to the factor of interest. The overriding principle is 
that the controls should represent the population at risk of the disease. More 
specifically, they should be individuals who, if they had experienced the disease 
outcome, would have been included as cases in our study. The outcome is the 
case-contro l status, and is therefore by definition a binary variable. The methods 
to use are therefore those outlined in Part C. These are summarized in Table 34.7 .  
The main feature that inOuences the methods for analysis is whether controls were 
selected at random or using a matched design. 

Analysis of unmatched case-control studies 

For unmatched case-control studies, standard methods for the analysis of binary 
outcomes using odds ratios as the measure of association are used . Analysis of the 
effect of a binary exposure starts with simple 2 x 2 tables, and proceeds to the use of 
Mantel-Haenszel methods and logistic regression to control for the effect of con
founding variables. These methods were described in detail in  Chapters 1 6  to  20. 

Analysis of matched case-control studies 

I n  a matched case-control study, each case is matched with one or more controls, 
who are deliberately chosen to have the same values as the case for any potential 
confounding variables. There are two main reasons for matching in case-control 
studies: 
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Table 34. 7 Analysis of case-control studies: summary of methods. 

Sampling scheme for controls Single exposure 

Random (unmatched case-control 2 x 2 table showing 

study) exposure x case/control 

OR = cross-product ratio 

Standard x2 test 

Stratum matching (frequency 

matched case-control study) 

Individual matching (one control 

per case) 

Individual matching (multiple 

controls per case) 

Stratified analysis: 2 x 2 table for 

each stratum 

Mantel-Haenszel OR and x2 test 

2 x 2 table showing agreement 

between case-control pairs with 

respect to risk factor 

OR = ratio of discordant pairs 

McNemar's x2 test 

Mantel-Haenszel OR and x2 test, 

stratifying on matched sets 

Adjustment for confounding variables 

Logistic regression or 

Mantel-Haenszel methods 

Logistic regression or stratified 

analysis, control l ing for both the 

matching factor(s) and the 

confounding variables 

Conditional logistic regression 

Conditional logistic regression 

1 Matching is often used to ensure that the cases and controls are similar 
with respect to one or more confounding variables. For example, in  a study 
of pancreatic cancer occurring in subjects aged between 30 and 80 years i t  
is  l ikely that the cases wil l  come from the older extreme of  the age range. Controls 
might then be selected because they are of similar age to a case. This would ensure 
that the age distribution of the controls is similar to that of the cases, and may 
increase the efficiency of the study, for example by decreasing the width of 
confidence intervals compared to an unmatched study. Note that unless the 
matching factor is strongly associated with both the outcome and the exposure 
the increase in efficiency may not be large, and therefore may not justify the 
increased logistical difficulties and extra analytic complexity. 

2 In some case-control studies it is difficult to define the population that gave rise 
to the cases. For example, a large hospi tal specializing in the treatment of 
cardiovascular  disease may attract cases not just from the surrounding area 
but also referrals from further afield. In developing countries, there may be no 
register of the population in a given area, or who attend a particular health 
facility. An alternative way of selecting controls representative of the popula
tion that gave rise to the cases is to select them from the neighbourhood of each 
case. For example, controls might be selected from among subjects l iving in the 
third-closest house to that of each case. 

I t  is essential to note that if matching was used in the design, then the analysis must 
always take this into account, as described in Chapter 2 1 . In summary: 
1 In the simple case of i ndividually matched case-control studies with one control 

per case and no confounders, the methods for paired data described in  Sections 
2 1 . 3 and 2 1 .4 can be used. 
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2 When there are several controls per case, Mantel-Haenszel methods may be 
used to estimate exposure odds ratios by stratifying on the case-control sets. 
However, they are severely l imited because they do not al low for further control 
of the effects of confounding variables that were not also matching variables. 
This is  because each stratum is a single case and its matched controls, so that 
further stratification is not possible. For example, if cases were individually 
matched with neighbourhood controls then i t  would not be possible to strat ify 
additionally on age group. Stratification can be used to control for additional 
confounders only by restricting attention to those case-control sets that are 
homogeneous with respect to the con founders of in terest .  

3 The main approach is to use conditional logistic regression (see Section 2 1 .5 ) ,  
which is  a variant of logistic regression in which cases are only compared to 
controls in  t he same matched set. This a l lows analysis adjusting for several 
confounders at the same time. There is also no restriction on the numbers of 
cases and controls in each matched set. 

4 However, i f  cases and controls are only frequency matched (e.g. i f  we simply 
ensure that the age d istribution is roughly the same in the cases and controls) ,  
then the matching can be broken in the analysis, and standard logistic regres
sion used, providing the matching variable(s) are included in the model. M antel
Haenszel methods are also valid, with the analysis stratified on al l  matching 
variables. 

Interpretation of the odds ratio estimated in a case-control study 

For a rare disease, we saw in Chapters 1 6  and 23 that the odds ratio, risk ratio and 
rate ratio are numerical ly equal .  For a common disease the meaning of t he odds 
ratio estimated in a case-control study depends on the sampling scheme used to 
select the controls, as described by Rodrigues and Kirkwood ( 1 990) .  Briefly, there 
are three possibi l i ties: 
1 The most usual choice is  to select controls from those still disease-free at  t he end 

of the study ( the denominator group in the odds measure of incidence);  any 
controls selected during the course of the study who subsequently develop 
disease are treated as cases and not as controls .  In this case the odds ratio 
estimated in t he case-control study estimates the odds ratio in the population . 

2 An a l ternative, in a case-contro l  study conducted in a defined population, is to 
select controls from the d isease-free population at each time at  which a case 
occurs (concurrent controls). In this case the odds ratio estimated in t he case
control study estimates the rate ratio in the population . 

3 More rarely, the controls can be randomly selected from the init ial ly disease
free population ( i f  this can be defined) .  In th is case the odds ratio estimated in  
the case-control study estimates the risk rat io i n  the population. 
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Calculation of required sample size 
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35.2 Principles of sample size 

calculations 

35.3 Formulae for sample size 

calculations 

35.4 Adjustments for loss to follow-up, 

confounding and interaction 

3 5 . 1  I N T R O D U CT I O N  

35.5 Adjustment for clustered designs 

35.6 Types of error in significance tests 

35.7 Implications of study power for 

the interpretation of significance 

tests 

An essential  part of planning any investigation is to decide how many people need 
to be studied . A formal sample size calculation, justifying the proposed study size 
and demonstrat ing that the study is capable of answering the questions posed, is 
now a component of a research proposal required by most funding agencies. Too 
often, medical research studies have been too small, because the sample size was 
decided on purely logistic grounds, or by guesswork. This is not only bad practice: it 
is considered by many to be unethical because of the waste of time and potential risk 
to patients participating in a study that cannot answer its stated research question.  
On the other hand, studying many more persons than necessary is  a lso a waste of 
t ime and resources. In  a cl inical trial , conducting a study that is too large may also 
be unethical, because this could mean that more persons than necessary were given 
the placebo, and that the introduction of a beneficial therapy was delayed. In this 
chapter we wil l :  
I I l lustrate the principles involved in sample size calculations by considering a 

simple example i n  detail .  
2 Present the different formulae required for the most common sample size 

calculations and i l lustrate their application. 
3 Discuss the implications of loss to fol low-up, control of confounding and 

examination of subgroup effects .  
4 Describe the principles of sample size calculation for clustered designs. 
5 Define the two types of error that can occur in significance tests. 
6 I l lustrate the implications of study power for the interpretation of statistical 

significance. 

3 5 . 2  P R I N C I P L E S  O F  S A M P L E  S I Z E  C A L C U LATI O N S  

Calculating the required sample size requires that we quantijj1 the objectives of our 
study. For example, it would not be sufficient to state simply that the objective is 
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to demonstrate whether or not formula-fed infants are at greater risk of death 
than breast-fed ones. We would also need to state: 
1 The size of the increased risk that i t  was desired to demonstrate since, for 

example, a smaller study would be needed to detect a fourfold relat ive risk 
than to detect a twofold one. 

2 The signijlcance level (or P-va/ue) , that is the strength of the evidence, that we 
require in  order to reject the null hypothesis of no difference in  risk between 
formula- and breast-fed infants. The greater the strength of evidence required, 
that is the smaller the P-value, the larger will be the sample size needed . 

3 The probabil ity that we would l ike to have ofachieving this level of significance. 
This is  required since, because of sampling variation (see Section 4.5), we cannot 
rule out the possibi lity that the size of the effect observed in the study wil l be 
much smaller than the ' true' effect. Thjs means that we can never guarantee that 
a study will be able to detect an effect however large we make i t ,  but we can 
increase the probabil ity that we do so by increasing the sample size. This 
probabil i ty is called the power of the study. 

For example, we might decide that a study comparing the risk of death among 
formula-fed and breast-fed infants would be worthwhile if there was a 90 % 
probabil ity of demonstrating a difference, at 1 % significance, if the true risk 
ratio was as high as 2 .  We would then calculate the number of children required. 
Alternatively, if  we knew that a maximum of 500 children were available in  our 
study, we might calculate the power of the study given that we wanted to detect a 
t rue risk ratio of 3 at 5 % significance. 

The principles involved in sample size calculations will now be i l lustrated by 
considering a simple example in detail .  

Example 35. 1 
Consider a hypothetical clin ical trial to compare two analgesics, a new drug (A) 
and the current standard drug ( B ), in which migraine sufferers wil l be given drug A 
on one occasion and drug B on another, the order in which the drugs are given 
being chosen at random for each patient. For i l lustrative purposes, we wil l  
consider a simpl ified analysis based on the drug stated by each patient to have 
provided greatest pain relief. How many patients would we need in order to be 
able to conclude that drug A is superior? 

First, we must be specific about what we mean by superiority. We wil l state this 
as an overall preference rate of 70 % or more for drug A, and we wil l decide that 
we would l ike a 90 % power of achieving a significant resul t  at the 5 % leve l .  

Under the nul l  hypothesis of no difference between the efficacies of the two 
drugs, the proportion of patients stating a preference for drug A will be 0.5 (50 %). 
We can test the evidence that the observed preference proportion, p, differs from 
0 .5  using a z-test, as described in Section 1 5 .6 :  

p - 0.5  p - 0.5 
7 - --- - --------
- -

s.e .  ( p) 
-

J(0 .5 x ( I  - 0.5 )/n) 
p - 0.5  

J(0.25/n) 
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This result  wi l l  be significant at  the 5 % level ( P  < 0.05) i f  z 2'. 1 . 96, or in  other 
words if p is l .96 standard errors or more away from the null hypothesis value of 
0 .5 .  

We wi l l  i l lustrate the principles behind sample size calculations by considering 
different possible sample sizes and assessing their adequacy as regards the power 
of our study. 

Significant 

(a) n = 20 

0 I 

Significant 

(b) n = 50 

0 

Sign ificant 

(c) Requ i red sample size 
(n = 62) 

0 

I 
0.28 

Not s ign ificant 

0.5 

: Not s ign ificant 
I 
I 
I 
I 
I ,..-----.. 

0.36 

0 .5 

Not s ign ificant 

0.5 

0.64 

0.7 : 
0.72 

0.7 

0.7 

Sign ificant 

Probab i l ity of a 
s ign ificant resu lt 
= 42. 1 %  

Sign ificant 

Probab i l ity of a 
s ign ificant resu lt  
increased to 82.4% 

Sign ificant 

Probab i l ity of a 
s ign ificant result 
= 90% 

/ 

Fig. 35 . 1  Probability of obta ining a significant result (at the 5 % level) with various sample sizes (n) when 

testing the proportion of preferences for drug A rather than drug B against the null hypothesis value of 0.5, if 

the true value is 0.7. 
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(a) We will start with a sample size of n = 20, as depicted in Figure 35 . 1 (a) .  Here: 

s .e . = ../(0.25/20) = 0. 1 1 1 8 

0 .5  + l .96 x s.e . = 0 .5  + 1 .96 x 0 . 1 1 1 8 = 0.72 

and 0 .5 - 1 .96 x s.e . = 0.5 - 1 .96 x 0. 1 1 1 8 = 0.28 

Thus observed proportions of 0.72 and above, or 0.28 and below, would 
lead to a result that is significant at the 5 % level .  

If the true proportion is 0.7, what is the l ikelihood of observing 0 .72 or 
above, and thus gett ing a result that is significant at the 5 % level? This is  
i l lustrated by t he shaded area in Figure 35 . 1 (a) .  The curve represents the 
sampling distribution, which is a normal distribution centred on 0 .  7 with a 
standard error of ../(0 .7 x 0.3/20) = 0. 1 025 .  The .::-value corresponding to 
0 .72 is :  

0 .72 - 0.7  
= 0 20 

0 . 1 025 
. 

The proportion of the standard normal d istribution above 0.20 is found 
from Table A l  (in the Appendix) to equal 0.42 1 ,  or 42 . 1  %. In  summary, 
tlus means that with a sample size of 20 we have only a 42. 1 % chance of 
demonstrating that drug A is better, if  the t rue preference rate is  0 .7 .  

(b) Consider next what happens if we increase the sample size to 50, as shown in  
Figure 35 . 1 (b  ) .  The ranges of  values that would now be significant have 
widened to 0 .64 and above, or 0 .36 and below. The sampling distribution 
has narrowed, and there is a greater overlap with the significant  ranges. 
Consequently, the probabili ty of a significant resul t  has increased. I t  is  now 
found to be 82.4 %, but this is  sti l l  less than our required 90 %. 

(c) Thus we certainly need to study more than 50 patients in order to have 90 % 
power. But exactly how many do we need? We need to increase t he sample 
size, n, to the point where the overlap between the sampling distribution and 
the significant ranges reaches 90 %, as shown in Figure 35 . 1 (c). We will now 
describe how to calculate directly the sample size needed to do this. A 
significant resu l t  wil l  be achieved if we observe a value above 

0 .5  + 1 .96 x s.e. = 0.5 + 1 . 96 x ../(0 .5 x 0.5/n) 

(or below 0 .5  - 1 .96 x s .e . ) .  We want to select a large enough n so that 90 % of 
the sampling d istribution is above this point. The z-value of the sampling 
d istribution corresponding to 90 % is - 1 .28 ( see Table A2), which means an 
observed value of 

0.7 - 1 .28 x s.e. = 0 .7  - 1 .28 x ../(0 .7  x 0.3/n)  
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Therefore, / 1  should be chosen large enough so that 

0.7 - 1 .28 x J(0 .7  x 0.3/11) > 0.5 + 1 .96 x J(0 .5  x 0 .5/11) 

Rearranging this gives 

0 0 
1 .96 x J(0 .5  x 0 .5)  + 1 .28 x J(0 .7  x 0 .3 )  

. 7  - .5  > 
I y 11 

Squaring both sides, and further rearrangement gives 

[ 1 .96 x J(0 .5  x 0 .5)  + 1 .28 x J(0 .7  x 0 .3)]2 
11 > ------------,---------

1 . 56662 
= 6 

4 
0 .22 

1 .  

0 .22 

We therefore require at least 62 patients to satisfy our requirements of 
having a 90 % power of demonstrating a difference between drugs A and 
B that is sign ificant  at the 5 % level, if the true preference rate for drug A is 
as high as 0 .7 .  

3 5 . 3  F O R M U LA E  F O R  S A M P L E  S I Z E  C A L C U LATI O N S  

The above d iscussion related to sample size determination for a test that a single 
proportion ( the proportion of participants preferring drug A to drug B) differs 
from a specified nul l  value. In practice it is not necessary to go through such 
detailed reasoning every time. Instead the sample size can be calculated directly 
from a general formula, which in this case is: 

[uJn( l - w) + vJnnull ( l  - 7rnuJJ)]2 n > ________ ? ___ _ 

( 7f - 1fn ul l )-

where: 
n = required minimum sample size 
w = proportion of interest 

7rnull = null hypothesis proportion 
u = one-sided percentage poin t  of the normal distribution corresponding to 

1 00 %  - the power, e.g. i f  power = 90 %, ( 1 00 % - power) = 1 0 %  and u 
= 1 .28 

v = percentage of the normal distribution corresponding to the required ( two
sided) sign ificance level, e .g. if significance level = 5 %, v = J . 96 .  

For example, in  applying th is  formula to the above example we have: 

7f = 0 .7, 7rnull = 0 .5, u = 1 . 28 and \I = 1 . 96 
g1vmg 
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[ l .28 x J(0. 7  x 0 .3 )  + 1 .96 x J(0.5  x 0. 5)]2 
n > -----------------

(0 .7 - 0.5)2 

which is exactly the same as obtained above. 

1 . 56662 
= 6 1 .4 0 .22 

The same principles can also be applied in other cases. Detailed reasoning is not 
given here but the appropriate formulae for use in the most common situations are 
l isted in Table 35. 1 .  The l ist consists of two parts. Table 35 . 1 (a) covers cases where 
the aim of the study is to demonstrate a specified difference. Table 35 .  l (b )  covers 
situations where the aim is to estimate a quantity of in terest with a specified 
prec1s1on. 

Note that for the cases with two means, proportions, or rates, the formulae give 
the sample sizes required for each of the two groups. The total size of the study is 
therefore twice this. 

Table 35.2 gives adjustment factors for study designs with unequal size groups 

(see Example 35 .4) . Note also that the formulae applying to rates give the required 
sample size in the same unit as the rates ( see Example 35 .3 ) .  

The use of  Table 35.  l will be  i l l ustrated by several examples. I t  is important to  
realize that sample size calculations are based on our  best guesses of a situation. 
The number arrived at is not magical .  I t  simply gives an idea of the sort of 
numbers to be studied. In  other words, i t  is useful for d ist inguishing between 50 
and I 00, but not between 5 1  and 52. It is essential to carry out sample size 
calculations for several different scenarios, not just one. This gives a clearer picture 
of the possible scope of the study and is helpful in weighing up the balance 
between what is desirable and what is logistically feasible. 

Example 35.2 
A study is to be carried out in a rural area of East Africa to ascertain whether 
giving food supplementation during pregnancy increases birth weight. Women 
attending the antenatal clinic are to be randomly assigned to either receive or not 
receive supplementation. Formula 4 in Table 35. 1 will help us to decide how many 
women should be enrol led in each group. We need to supply the following infor
mation: 
1 The size of the difference between mean birth weights that we would l ike to be 

able to detect . After much consideration it was decided that an increase of 
0.25 kg was an appreciable effect that we would not l ike to miss. We therefore 
need to apply the formula with µ 1 - µ0 = 0.25 kg. 

2 The standard deviations of the d istributions of birth weight in  each group. I t  
was decided t o  assume that the standard deviation o f  birth weight would be the 
same in  the two groups. Past data suggested that i t  would be about 0.4 kg. I n  
other words we decided to assume that O" J  = 0.4 k g  and O"o = 0.4 kg. 

3 The power required. 95 % was agreed on. We therefore need u = 1 . 64. 
4 The significance level required. It was decided that if possible we would like to 

achieve a result significant at the l % level .  We therefore need v = 2 .58 .  
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Applying formula 4 with these val ues gives: 

I 
( 1 .64 + 2.58)2 X (0.42 + 0.42 ) 

= 
1 7 .8084 X 0 .32 

= 9 1 . 2 1 > 0.252 0 .0625 

Therefore, in order to satisfy our requirements, we would need to enro l  about 90 
women in each group. 

Example 35.3 
Before embarking on a major water supply, san itation, and hygiene intervention 
in  southern Bangladesh, we would first l ike to know the average number of 
episodes of d iarrhoea per year experienced by under-5-year-olds. We guess that 
this incidence is probably about 3 ,  but would like to estimate it within ±0.2. This 
means that i f, for example, we observed 2.6 episodes/child/year, we would l ike to 
be able to conclude that the true rate was probably between 2.4 and 2 .8  episodes/ 
child/year. Expressing this in more statistical terms, we would l ike our 95 % 
confidence interval to be no wider than ±0.2. As the width of this confidence 
interval is approximately ±2 s .e . 's, this means that we would l ike to study enough 
children to give a standard error as small as 0. 1 episodes/ch ild/year. Applying 
formula 9 in Table 35 . 1 gives: 

3 11 > -0 ? = 300 . 1 -

Note that the formulae applying to rates (numbers 2, 5, 9, 1 2 ) give the required 
sample size in the same unit as the rates . We specified the rates as per child per 
year. We therefore need to study 300 child-years to yield the desired precision. 
This could be achieved by observing 300 children for one year each or, for 
example, by observing four times as many ( 1 200) for 3 months each . I t  is import
ant not to overlook, however, the possibil ity of other factors such as seasonal 
effects when deciding on the time in terval for a study involving the measurement 
of incidence rates. 

Example 35.4 
A case-contro l  study is planned to investigate whether bottle-fed infants are at 
increased risk of death from acute respiratory infections compared to breast-fed 
infants. The mothers of a group of cases ( infant deaths, with an underlying 
respiratory cause named on the death certificate) will be interviewed about the 
breast-feeding status of the child prior to the i l lness leading to death. The results 
wil l  be compared with those obtained from mothers of a group of healthy controls 
regarding the current breast-feeding status of their infants. I t  is  expected that 
about 40 % of controls (no = 0.4) will be bottle-fed, and we would l ike to detect a 
difference if bottle-feeding was associated with a twofold increase of death 
(OR = 2) .  



Table 35.1  Formulae for sample size determination. (a) For studies where the aim is to demonstrate a significant difference. (b) For studies where the aim is to estimate a quantity of interest 

with a specified precision. 

(a) Significant result 
1 Single mean 

2 Single rate* 

3 Single proportion 

4 Comparison of two means 

(sample size of each group) 

5 Comparison of two rates* 

(sample size of each group) 

6 Comparison of two proportions 

(sample size of each group) 

7 Case-control study 

(sample size of each group) 

{' - /lo 
a 
u, v 

µ 

/lo 
u, v 

7f 
'ifO 
u, v 

{'1 - /.to 
al , ao 
u, v 

/11 . 110 
u, v 

fl1 I 1fQ 
u, v 

7fo 
OR 

'if\ 

u, v 

Information needed 

Difference between mean, 11, and null hypothesis value, /lo 
Standard deviation 

As below 

Rate 

Null hypothesis value 

As below 

Proportion 

Null hypothesis value 
As below 

Difference between the means 

Standard deviations 

As below 

Rates 

As below 

Proportions 

As below 

Proportion of controls exposed 

Odds ratio 

Proportion of cases exposed, calculated from 

7ro OR 
71"\ = 

1 + 7ro (OR  - 1 ) 
As below 

Formula for minimum sample size 

(u + v)2a1 
(µ - /10)2 

(u + v)2{' 
(µ - floi 

{ uJ[7r(1 - 7r)] + vJ[7ro( 1  - 7ro )]}2 
(7r - 7ro)2 

(u + v)2(if, + ail 
(µ, - /10 )2 

(u + v/ (111 + {to) 
(/11 - 110)2 

{ uJ[7r1 ( 1  - 7r1 ) + 7ro(1 - 7ro )] + vJ[27r(1 - 7r)] }2 

(7ro - 7f, )2 
where 7i' = 71"1 + 7ro 

2 
{ uJ[7ro ( 1  - 7ro) + 7r1 ( 1  - 7r1 )] + vJ[27i'(1 - 7f)] }2 

(7r1 - 7l"o)2 
where 7i' = 7ro + 7fJ 

2 



All cases LJ 

v 

(b) Precis ion 

8 Single mean a 
e 

9 Single rate* ,� 
e 

1 0  Single proportion 71' 
e 

1 1  Difference between two means a1 , ao 
(sample size of each group) e 

12 Difference between two rates* µ1 , {Lo 
(sample size of each group) e 

13 Difference between two proportions 71'1 , 7l'o 
(sample size of each group) e 

One-sided percentage point of the normal distribution 

corresponding to 1 00 % - the power 

e.g. if power = 90 %, u = 1 .28 
Percentage point of  the normal distribution corresponding 

to the (two-sided) significance level 

e.g. if sign ificance level = 5%, v = 1 .96 

Standard deviation 

Required size of standard error 

Rate 

Required size of standard error 

Proportion 

Required size of standard error 

Standard deviations 

Required size of standard error 

Rates 

Required size of standard error 

Proportions 

Required size of standard error 

a2 
ei 
µ 
� 
11'(1 - 11') 

e1 

ai + � 
_e_1_ 

1�1 + {'o 
-el-

11'1 ( 1 - 71'1 ) + 7l'o( 1  - 71'0 ) 
el 

* I n  these cases the sample size refers Lo the same uni ts as used for the denominator of t he rale(s ) .  For example, if the rate is expressed per person-year, the formula gives 

the number of person-years of observation requ ired (see Example 35 .3 )  
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How many cases and controls need to be studied to give a 90 % power (u = 1 .28 )  
of achieving 5 % significance ( v = 1 .96)? The calculation consists of several steps 
as detailed in formula 7 of Table 35 . 1 .  
1 Calculate 111 , the proportion of cases bottle-fed: 

1100R 0.4 x 2 0 .8  
11 1 = = = - = 0 .57 

l + 11o(OR - l ) l + 0.4 x (2 - l )  1 .4 

2 Calculate if, the average of 110 and 111 : 

if =  
0.4 + 0· 57 

= 0 485 2 . 

3 Calculate the minimum sample size: 

[ 1 .28 ,/(0.4 x 0.6 + 0.57 x 0.43) + 1 .96,/(2  x 0.485 x 0. 5 1 5 )]2 
n > ' (0 .57 - 0.4)-

[ 1 .28 ,/0.485 1 + l .96 J0.4996]2 
= 

2 .2769 
= 9 4 0 . 1 72 0 . 1 72 1 7  . 

We would therefore need to recruit about 1 80 cases and 1 80 controls, giving a total 
sample size of 360. 

What difference would it make if, rather than recruiting equal numbers of cases 
and controls, we decided to recruit three times as many controls as cases? Table 
35 .2 gives appropriate adjustment factors for the number of cases according to 
differing number of controls per case. For c = 3 the adj ustment factor is 2/3 . This 
means we would need 1 80 x 2/3, that is 1 20 cases, and three times as many, 

Table 35.2 Adjustment factor for use in study designs to compare unequal sized groups, 

such as in a case-control study selecting multiple controls per case. This factor (f) applies 

to the smaller group and equals (c + 1 )/(2c), where the size of the larger group is to be c 

times that of the smaller group. The sample size of the smaller group is therefore fn, where 

n would be the number required for equal-sized groups, and that of the larger group is dn 
(see Example 35.4). 

Ratio of larger to smaller group (c) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Adjustment to sample size of smaller group (f) 

1 

3/4 

2/3 

5/8 

3/5 
7/1 2 

417 

9/1 6 

5/9 

1 1 /20 
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namely 360, controls .  Thus although the requirement for the number of cases has 
considerably decreased, the total sample size has increased from 360 to 540. 

3 5 . 4 A D J U S T M E N T S  F O R  L O S S  TO F O L L O W - U P , C O N F O U N D I N G  A N D  

I N T E R A C T I O N  

The calculated sample size should be increased to allow for possible non-response 
or loss to follow-up. Further adjustments should be made if the final analysis wil l 
be adjusted for the effect of confounding variables or if the examination of 
subgroup effects is planned. 
1 I t  is nearly always the case that a proportion of the people originally recruited to 

the study will not provide data for inclusion in the final analysis: for example 
because they withdraw from the study or are lost to follow-up, or because 
information on key variables is missing. The required sample size should be 
adjusted to take account of these possibi l ities. If we estimate that x % of patients 
wil l not contribute to the final analysis then the sample size should be multiplied 
by 1 00/( 1 00 - x).  For example if x = 20 %, the multiplying factor equals 
1 00/( 1 00 - 20) = 1 .25 .  

Adj ustment factor for x% loss = 1 00/( 1 00 - x) 

2 Smith and Day ( 1 984) considered the effect of control l ing for confounding 
variables, in the context of the design of case-control studies. They concluded 
that, for a single confounding variable, an increase in the sample size of more 
than 1 0 %  is unl ikely to be needed. Breslow and Day ( 1 987)  suggested that for 
several confounding variables that are jointly independent, as a rough guide one 
could add the extra sample size requirements for each variable separately. 

3 In some circumstances we wish to design a study to detect differences between 
associations in different subgroups, in other words to detect interaction between 
the treatment or exposure effect and the characteristic that defines the sub
gro up .  The required sample size wil l be at least four times as large as when the 
aim is to detect the overall association, and may be considerably larger. For 
more details see Smith and Day ( 1 984) or Breslow and Day ( 1 987) .  

3 5 . 5  A D J U S T M E N T  F O R  C L U S T E R E D  D E S I G N S  

The analysis o f  studies that employ a clustered design was described i n  Chapter 3 1 .  
These include cluster randomized trials, in which randomization is applied to 
clusters of people rather than individuals (see also Section 34.2), family studies 
and studies which employ a cl uster sampling scheme (see also Section 34.4) . 
Because individuals within a cluster may be more similar to each other than to 
individuals in other clusters, a cluster randomized trial needs to include more 



424 Chapter 35: Calculation of required sample size 

individuals than the corresponding individually randomized trial . The same is true 
of studies that employ a cluster rather than individual sampling scheme. 

The amount by which the sample size needs to be multipl ied is known as the 
design effect ( Deff ), and depends on the intraclass correlation coefficient ( ICC). 
The ICC was defined in  Section 3 1 .4 as the ratio of the between-cluster variance to 
the total variance. 

Design effect (Deff) = I + (n' 
- 1) x I CC 

I CC = intraclass correlation coefficient 

n' = average cluster size 

It can be seen that two factors influence the size of the design effect :  
1 the  greater the  ICC, the greater will be  the design effect; and 
2 the greater the number of individuals per cluster, the greater wil l  be the design 

effect. 
The number of clusters required is given by: 

n No.  of clusters = - [ 1  + (n' - 1 )  x ICC] n' 
n = uncorrected total sample size 

n' = average cluster size 

Estimation of the I CC, at the time that a study is designed, is  often difficult 
because published papers have not tended to report I CCs. Although attempts have 
been made to publish typical ICCs, for different situations ( for example see 
Gul l iford et al., 1 999), i t  will usually be sensible to calculate the n umber of clusters 
required under a range of assumptions about the I CC, as well as using a range of 
values for the cluster size. In particular, it may be useful to present the results 
graphically, with l ines showing the number of clusters required against number of 
individuals per cluster, for various values of ICC. 

For more details about sample size calculations for cluster randomized trials, 
see Donner and Klar (2000) or Ukoumunne et al. ( 1 999) .  A lternatively, Hayes 
and Bennett ( 1 999) suggested a method based on the coefficient of variation 

( standard deviation/mean)  of cluster rates, proportions or means. They give 
guidance on how to estimate this value with or without the use of prior data on 
between-cluster variation, and provide formulae for both unmatched and pair
matched trials. 
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3 5 . 6  T Y P E S  O F  E R R O R  I N  S I G N I F I C A N C E  T E S T S  

A significance test can never prove that a nul l  hypothesis i s  either true or false. I t  
can only give an indication of  the strength of  the evidence against i t .  I n  using 
signi ficance tests to make decisions about whether to reject a null hypothesis, we 
can make two types of error: we can reject a nul l  hypothesis when it is in fact t rue, 
or fai l  to reject it when it is false. These are cal led type I and type I I  errors 

respectively (Table 35 . 3 ) .  
As explained in Chapter 8,  the P-value (significance level) equals the  probability 

of occurrence of a result as extreme as, or more extreme than, that observed if the 
null hypothesis were true. For example, there is a 5 % probabil ity that sampling 
variation alone wil l lead to a P < 0 .05 (a result significant at the 5 % level) ,  and so 
i f  we judge such a result as sufficient evidence to reject the null hypothesis, there is 
a 5 % probability that we are making an error in doing so, i f  the null hypothesis is 
true (see Figure 35 .2a) .  

The second type of error is that  the nul l  hypothesis is not rejected when it i s  
false. This  occurs because of overlap between the real sampling distribution of 
the sample difference about the population difference, d ( 'I- 0) and the accept
ance region for the nul l  hypothesis based on the hypothesized sampling distri
bution about the incorrect difference, 0.  This is i l lustrated in  Figure 35 .2(b) .  
The shaded area shows the proportion (b %) of the real sampling distribution 
that would fall within the acceptance region for the null hypothesis, i .e. that 
would appear consistent with the null hypothesis at the 5 % level .  The prob
ability that we do not make a type I I  error ( 1 00 - b %) equals the power of the 
test. 

If a lower significance level were used, making the probabil ity of a type I 
error smal ler, the size of the shaded area would be increased, so that there 
would be a larger probability of a type I I  error. The converse is a lso true. For a 
given significance level, the probability of a type I I  error can be reduced by 
increasing the power, by increasing either the sample size or the precision of the 
measurements (see Chapter 36). Each of the curves in Figure 35 .2  would be 
taller and narrower, and overlap less; the size of the shaded area would 
therefore be reduced. 

Table 35.3 Types of error in hypothesis tests. 

Conclusion of significance test 

Reject null hypothesis 

Do not reject nul l  hypothesis 

Null hypothesis is true 

Type I error 
(probability = significance level) 

Reality 

Correct conclusion 

(probabil ity = 1 - significance level) 

Null hypothesis is false 

Correct conclusion 

(probabil ity = power) 

Type II error 
(probability = 1 - power) 
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Reject N H  if sample 
difference here 

2.5% 

Accept NH  if sample 
difference here 

0 

Reject N H  if sample 
d ifference here 

2.5% 

(a )  Type I error. Nu l l  hypothesis (NH) is true. Population difference = 0 .  The curve shows 
the sampl ing d istri bution of the sample d ifference. The shaded a reas (total 5%) g ive 
the probabi l ity that the nu l l  hypothesis is wrongly rejected. 

Reject NH if sample 
d ifference here 

,., ... 
_ _  _.. f 

/ / / 

Accept NH if sample 
difference here 

I 
I I I 

I I 

I I I 

I I 
,,. �  

0 

Reject N H  if sample 
d ifference here 

d 

(b) Type I I  error. Nu l l  hypothesis is false. Popu lation difference = dtO .  The continuous 
curve shows the rea l sampl ing distribution of the sample difference, wh i le  the dashed 
curve shows the sampl ing distribution under the nu l l  hypothesis. The shaded a rea is the 
probabi l ity (b%) that the nul l  hypothesis fai ls to be rejected. 

Fig. 35.2 Probabilities of occurrence of the two types of error of hypothesis testing, i l lustrated for a test at 

the 5% level. 

3 5 . 7  I M P L I C AT I O N S  O F  S T U DY P O W E R  F O R  T H E  I N T E R P R ETAT I O N  O F  

S I G N I F I C A N C E  T E S T S  

Unfortunately, significance tests are often misused, with investigators using a S % 
threshold for statistical significance and concluding that any non-significant result 
means that the null hypothesis is true. Another common misinterpretation is that 
the P-value is the probability that the null hypothesis is true. 

Table 35 .4(a)  demonstrates why such thinking is incorrect. It is based on 
considering what would happen if 1 000 different nul l hypotheses were tested and 
significance at the S % level (P < 0.05) used as a threshold for rejection, under the 
following plausible assumptions: 
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Table 35.4 Implications of study power for the interpretation of significance tests. 

(a) Conclusions of significance tests of 1 000 hypotheses, of which 1 0% are false, using P = 0.05 as threshold 

sign ificance level, and conducted with 50% power (adapted from Oakes, 1 986). 

Conclusion of significance test 

Reject nul l  hypothesis (P < 0.05) 

Do not reject nul l hypothesis (P � 0.05) 

Total 

Reality 

Null hypothesis true Nul l  hypothesis false 

45 (Type I errors) 50 

855 50 (Type II errors) 

900 1 00 

Total 

95 

905 

1 000 

(b) Proportion of false-positive significant results, according to the P-value used for significance, the power of the 

study and the proportion of studies in which the null hypothesis is truly false (adapted from Sterne and Davey Smith 

2001) .  The result corresponding to Table 35.4(a) is in bold. 

Proportion of studies in which 

the null hypothesis is false 

80% 

50% 

1 0% 

1 %  

Power of study 

20% 

50% 

80% 

20% 

50% 

80% 

20% 

50% 

80% 

20% 

50% 

80% 

Percentage of significant results that are false-

positives 

p = 0.05 p = 0.01 p = 0.001 

5.9 1 .2 0.1 

2.4 0.5 0.0 

1 .5 0.3 0.0 

20.0 4.8 0.5 

9.1 2.0 0.2 

5.9 1 .2 0 . 1  

69.2 3 1 .0 4.3 

47.4 1 5 .3 1 .8 

36.0 1 0.1 1 . 1 

96.1 83.2 33.1 

90.8 66.4 1 6.5 

86.1 55.3 1 1 .0 

I 0 % of the nul l  hypotheses tested are in fact false ( i .e. the effect being i nvesti
gated i s  real ) ,  and 90 '% are true ( i . e .  the hypothesis tested is incorrect) .  This is 
conceivable given the large numbers of factors searched for in the epidemi 
ological l i terature. For  example by  1 985 nearly 300 risk factors for coronary 
heart disease had been identified; it is unl ikely that more than a fraction of these 
factors actually increase the risk of the disease. 

2 The power of the test is 50 %. This is consistent with published surveys of the 
size of clinical trials ( see, for example, Moher et al. , 1 994); a large proportion 
having been conducted with an inadequate sample size to address the research 
question .  

Assumption ( I )  determines the column totals in  the table; the nul l  hypothesis is 
true i n  900 of the tests and false in  1 00 of them. The type I error rate wil l  be 5 %, 
the significance level being used . This means that we will i ncorrectly reject 45 of 
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the 900 true nul l  hypotheses. Assumption (2) means that that the type I I  error rate 
equals 50 % ( I  00 % - power) . We will therefore fail to reject 50 of the 1 00 nu l l  
hypotheses that  are false. I t  can be seen from the table that  of the 95 tests that 
result in  a statistically significant result, only 50 are correct; 45 ( 47.4 %) are type I 
errors (false positive results) .  

Table 35 .4(b) extends Table 35 .4(a) by showing the percentage of false positive 
results for different P-value thresholds under different assumptions about both the 
power of studies and the proportion of true null hypotheses . For any choice of 
significance level, the proportion of 'significant' results that are false-posit ives is  
greatly reduced as power increases. The table suggests that unless the proportion 
of meaningful hypotheses is very small ,  i t  is  reasonable to regard P-values less 
than 0 .00 1 as provid ing strong evidence against the nul l  hypothesis. 
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In this chapter we consider how to examine for errors made in measuring outcome 
or exposure variables, and the implications of such errors for the results of 
statistical analyses. Such errors may occur in a variety of ways, including: 
1 Instrumental errors, arising from an inaccurate diagnostic test, an imprecise 

instrument or questionnaire l imitations. 
2 Underlying variability, leading to differences between replicate measurements 

taken at different points in time. 
3 Respondent errors, arising through misunderstanding, faulty recal l ,  giving the 

perceived 'correct' answer, or through lack of interest. In  some instances the 
respondent may deliberately give the wrong answer because, for example, of 
embarrassment in  questions connected with sexually transmitted d iseases or 
because of suspicion that answers could be passed to income tax authorities. 

4 Observer errors, including imprecision, misuse/misunderstanding of proced
ures, and mistakes. 

5 Data processing errors, such as coding, copying, data entry, programming and 
calculating m istakes. 

Our focus is on the detection, measurement and impl ications of random error, in 
the sense that we wil l  assume that any errors in measuring a variable are independ
ent of the value of other variables in the dataset. Detailed discussion of differential 

bias arising from the design or conduct of the study, such as selection bias, is 
outside the scope of this book. Readers are referred to textbooks on epidemiology 
and study design: recommended books are l isted at the beginning of Chapter 34. 
We cover: 
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1 How to evaluate a d iagnostic test or compare a measurement technique against 
a gold standard, that gives a (more) precise measurement of the true value. 
Often, the gold-standard method is expensive, and we wish to examine the 
performance of a cheaper or quicker alternative. 

2 How to choose the 'best' cut-off value when using a numerical variable to give a 
binary classification . 

3 How to assess the reproducibility of a measurement, including: 
• agreement between different observers using the same measurement tech

rnque, 
• the agreement between replicate measurements taken at different points in 

time. 
4 The implications of inaccuracies in measurement for the interpretation of results . 

3 6 . 2  T H E  E VA L U A T I O N  OF D I A G N O S T I C  T E S T S  

The analysis o f  binary outcome variables was considered in  Part C ,  while methods 
for examining the effect of binary exposure variables are presented throughout 
this book.  In this section we consider how to assess the ability of a procedure to 
correctly classify individuals between the two categories of a binary variable. For 
example, individuals may be classified as diseased or non-d iseased, exposed or 
non-exposed, posit ive or negative, or at high risk or not. 

Sensitivity and specificity 

The ability of a diagnostic test (or procedure) to correctly classify individuals into 
two categories (posit ive and negative) is  assessed by two parameters, sensitivity 

and specificity: 

Sensitivity = proportion of true positives correctly identified as such 
= 1 - false negative rate 

Specificity = proportion of true negatives correctly identified as such 
= 1 - false positive rate 

To estimate sensitivity and specificity, each individual needs to be classified defini
tively ( using a 'gold-standard' assessment) as true positive or true negative and, in 
addition, to be classified according to the test being assessed. 

Example 36. 1 
Table 36. 1 shows the results of a pilot study to assess parents' ability to recall the 
correct BCG immunization status of their children, as compared to health author
ity records. Of the 60 children who had in fact received BCG immunization, 
almost all , 55, were correctly identified as such by their parents, giving a sensitivity 
of 55/60 or 9 1 .7 %. In contrast, 15 of the 40 children with no record of BCG 
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Table 36.1 Comparison of parents' recall of the BCG immunization status of their children with that recorded in  the 

health authority records. 

BCG immunization according 

to health authority records 

('gold standard' test) 

Yes 

No 

Total 

BCG immunization according to parents 

(procedure being assessed) 

Yes No Total 

55 5 60 
1 5  25 40 

70 30 1 00 

PPV = 55/70 NPV = 25/30 

= 78.6% = 83.3% 

Sensitivity = 55/60 = 91 .7% 
Specificity = 25/40 = 62 .5% 

immunization were claimed by their parents to have been immunized, g1v111g a 
specificity of 25/40 or 62.5 %. 

Sensitivity and specificity are characteristics of the test. Their values do not depend 
on the prevalence of the disease in the population . They are particularly important 
in assessing screening tests. Note that there is an inverse relationship between the 
two measures, tightening (or relaxing) criteria to improve one will have the effect 
of decreasing the magnitude of the other. Where to draw the line between them 
wil l  depend on the nature of the study. For example, in designing a study to test a 
new leprosy vaccine, it would be important initially to exclude any lepromatous 
patients. One would therefore want a test with a high success rate of detecting 
posit ives, or in other words a highly sensitive test. One would be less concerned 
about specifici ty, since it would not matter if a true negative was incorrectly 
identified as posit ive and so excluded . In contrast, for the detection of cases during 
the post-vaccine (or placebo) follow-up period, one would want a test with high 
specificity, since i t  would then be more important to be confident that any 
posit ives detected were real, and less important if some were missed . 

Predictive values 

A clinician who wishes to interpret the results of a diagnostic test wil l want to 
know the probabil ity that a patient is truly posit ive if the test is  positive and 
similarly the probability that the patient is truly negative if the test is negative. 
These are called the positive and negative predictive values of the test: 

Positive predictive value (PPV) = proportion of test positives 
that are tru ly positive 

Negative predictive value (NPV) = proportion of test negatives 
that are truly negative 



432 Chapter 36: Measurement error: assessment and implications 

In Example 36. 1 ,  BCG immunization was confirmed from health authority 
records for 55 of the 70 children reported by their parents as having received 
immunization, giving a PPY of 55/70 or 78 .6 %. The N PY was 25/30 or 83 .3  %. 

The values of the positive and negative predictive values depend on the preva
lence of the disease in the population, as well as on the sensitivity and specificity of 
the procedure used . The lower the prevalence of true positives, the lower wil l be 
the proportion of true posit ives among test positives and the lower, therefore, wil l 
be the positive predictive value. Simi larly, increasing prevalence will lead to 
decreasing negative predictive value. 

Choosing cut-offs 

Where binary class i fications are derived from a numerical variable, using a cut-off 
value, the performance of different cut-off values can be assessed using a Receiver 

Operating Characteristic curve, often known as a ROC curve. This is a plot of 
sensitivity against I - specificity, for different choices of cut-off. The name of the 
curve derives from its original use in stud ies of radar signal detect ion.  

Example 36.2 
Data from a study of lung function among 636 children aged 7 to 1 0  years living in  
a deprived suburb of Lima, Peru were introduced in Chapter 1 1 . For  each child 
the FEY 1 (the volume of air the child could breathe out in 1 second) was measured 
before and after she or he exercised on an electric treadmill for 4 minutes, and the 
percentage reduction in FEY 1 after exercise was calculated. This ranged from 
- 1 7 .9 % (i .e .  an increase post-exercise) to a 7 1 .4 %  reduction . 

A total of 60 (9 .4 %) of the parents (or carers) reported that their child had 
experienced chest tightness suggestive of asthma in the previous 1 2  months. There 
was strong evidence of an association between % reduction in FEY1 and reported 
chest tightness in the child (odds ratio per unit increase in % reduction 1 .052, 95 % 
CI 1 .03 1 to 1 .075) .  To examine the util ity of % reduction in FEY 1 as a means of 
diagnosing asthma, a ROC curve was plotted, as displayed in Figure 36. 1 ,  showing 
sensitivity (vertical axis) against 1 - specificity (horizontal axis) for different 
choices of cut-off values for FEY 1 •  In this example, we can see that if we required 
75 % sensitivity from our cut-off then specificity would be around 50 %, while a 
lower cut-off value that gave around 60 % sensitivity would yield a specificity of 
about 75 %.  

The overal l  abil ity of the continuous measure (in th is  case FEY 1 ) to discriminate 
between individuals with and without disease may be measured by the area under 

the ROC curve. If perfect discrimination were possible (the existence of a cut-off 
with 1 00 %  sensitivity and 1 00 %  specificity), the ROC curve would go across the 
top of the grid area, and yield an area of I .  This i s  because decreasing the 
specificity by lowering the cut-off would maintain sensitivity at I 00 %, since a 
lower cut-off can only capture an equal or higher percentage of cases. I n  contrast, 
i f  the continuous measure is not able to discriminate at al l ,  then 1 00 %  sensitivity 
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Fig. 36. 1 ROC curve showing the sensitivity and specificity corresponding to different choices of cut-off for 
% reduction in FEV1 as a test for chest tightness suggestive of asthma in chi ldren in Peru. 

can only be achieved with 0 % specificity and vice versa. The ROC curve wi l l  be the 
straight l ine in Figure 36. 1 showing sensitivity = I - specificity, and the area under 
the curve will be 0 .5 .  In this example the area under the ROC curve is 0.699. The 
area under the ROC curve may also be used to quantify how well a predictor 
based on a number of variables ( for example based on the linear predictor from a 
logistic regression model ) discriminates between individuals with and without 
d isease. 

3 6 . 3  A S S E S S I N G  R E P R O D U C I B I L I TY O F  M E A S U R E M E N T S  

In  this section w e  describe methods t o  assess the extent o f  reproducibility of a 
measurement (also k nown as reliability), including: 
• agreement between different observers using the same measurement technique; 
• agreement between replicate measurements taken at different points in time. 
This is particularly important for any variable that is subjectively assessed, such as 
in Example 36.3, or for which there may be underlying natural variation, such as the 
composi tion of a person's daily nutritional intake (see Example 36 .5) ,  which will 
show some day-to-day variations, as well as possible marked seasonal d ifferences. 

Kappa statistic for categorical variables 

For categorical variables, the extent of reproducibil i ty is usually assessed using a 
kappa statistic. This is based on comparing the observed proportion of agreement 
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(Aobs) between two readings made by two different observers, or on two different 
occasions, with the proportion of agreements (Aexp) that would be expected simply 
by chance. It is denoted by the Greek letter kappa, r;,, and is defined as: 

Aobs - Aexp r;, = -----'-
1 - Aexp 

I f  there is complete agreement then Aobs = 1 and so r;, = 1 .  I f  there is no more 
agreement than would be expected by chance alone then r;, = 0, and if there is 
less agreement than would be expected by chance alone then r;, wil l  be negative. 
Based on criteria originally proposed by Landis and Koch: 
• kappa values greater than about 0.75 are often taken as representing excellent 

agreement; 
• those between 0.4 and 0.75 as fair to good agreement; and 
• those less than 0.4 as moderate or poor agreement. 

Standard errors for kappa have been derived, and are presented in computer 
output by many statistical packages. These may be used to derive a P-value 
corresponding to the null hypothesis of no association between the ratings on 
the two occasions, or by the two raters. In general, such P-values are not of interest, 
because the null hypothesis of no association is not a reasonable one. 

We will i l lustrate the calculation of kappa statistics using data from a study of 
the way in which people tend to explain problems with their health. We wil l do this 
first using a binary classification, and then a fuller 4-category classification. 

Example 36.3: Binary classification 
Table 36.2 summarizes data from a study in which 1 79 men and women fi l led in a 
Symptom Interpretation Questionnaire on two occasions three years apart. On the 
basis of this questionnaire they were classified according to whether or not they 
tended to provide a normalizing explanation of symptoms. This means discounting 
symptoms, externalizing them and explaining them away as part of normal experi
ence. I t  can be seen that while 76 participants were consistently classified as 
normalizers, and 47 as non-normalizers, the class i fication changed for a total of 
56 participants. More participants were classified as normalizers on the second 
than the first occasion. 

The observed proportion of agreement between the assessment on the two 
occasions, denoted by Aobs is therefore given by: 

Aobs = (76 + 47)/ 1 79 = 1 23/ 1 79 = 0.687 (68 .7 %) 

Part (b) of Table 36.2 shows the number of agreements and disagreements that 
would be expected between the two classifications on the basis of chance alone. 
These expected numbers are calculated in a similar way to that described for the 
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Table 36.2 Classification of 1 79 men and women as 'symptom normalizers' or not, on 

two measurement occasions three years apart. Data kindly provided by Dr David Kessler. 

(a) Observed numbers 

First classification 

Normalizer 

Non-normalizer 

Total 

(b) Expected numbers 

First classification 

Normalizer 

Non-normalizer 

Total 

Second classification 

Normalizer 

76 

39 

1 1 5  

Non-normalizer 

1 7  

47 

64 

Second classification 

Normalizer 

59.7 

55.3 

1 1 5  

Non-normalizer 

33.3 

30.7 

64 

Total 

93 

86 

1 79 

Total 

93 

86 

1 79 

chi-squared test in Chapter 1 7 . The overal l  proportion classified as normal izers on 
the second occasion was 1 1 5/ 1 79 .  I f  this classification was unrelated to that on 
the first, then one would expect this same proportion of second occasion normal
izers in each first occasion gro up, that is 1 1 5/ 1 1 9 x 93 = 59.7 classified as nor
malizers on both occasions, and 1 1 5/ 1 1 9 x 86 = 55 .3  of those classified as 
non-normal izers on the first occasion classified as normal izers on the second. 
Similarly 64/ 1 79 x 93 = 33.3 of those classi fied as normalizers on the first 
occasion would be classified as non-normalizers on the second, while 
64/ 1 79 x 86 = 30.7 would be classified as non-normalizers on both occasions. 
The expected proportion of chance agreement is therefore: 

Aexp = (59 .7  + 30.7)/ 1 79 = 0 .505 (50 . 5 %) 

Giving a kappa statistic of: 

"' =  (0 .687 - 0.505)/( 1  - 0 .505) = 0.37 

This would usually be interpreted as representing at most moderate agreement 
between the two classifications made over the three-year follow-up period. 

Example 36.4: Categorical classification 
Table 36 .3(a )  shows a more complete version of the data presented in Table 36.2,  
with each participant now assessed as belonging to one of four groups according 
to the way in which they tended to explain symptoms. Those classed as non
norrnal izers ( see earlier explanation) have been divided into somatizers, those who 
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Table 36.3 Classification of the dominant style for explaining symptoms of 1 79 men and women as 

normalizers, somatizers, psychologizers or no dominant style, on two measurement occasions three 

years apart. Data kindly provided by Dr David Kessler. 

{a) Observed numbers 

Dominant style at 
Dominant style at second classification 

first classification Normalizer Somatizer Psychologizer None Total 

Normalizer 76 0 7 1 0  93 

Somatizer 2 0 3 1 6 

Psychologizer 1 7  1 5  8 41 

None 20 3 5 1 1  39 

Total 1 1 5  4 30 30 1 79 

(b) Expected numbers of agreements 

Dominant style at 
Dominant style at second classification 

first classification Normalizer Somatizer Psychologizer None Total 

Normalizer 59.7 93 

Somatizer 0.1 6 

Psychologizer 6.9 41 

None 0.2 39 

Total 1 1 5  4 30 30 1 79 

tend to explain their symptoms as ind icating a potentially more serious physical 
i l lness, psychologizers, those who tend to give psychological explanations for their 
symptoms, and those with no dominant style. The observed proportion of agree
ment between the two occasions using the four category classification is: 

A obs = (76 + 0 + 1 5  + 1 1 )/ 1 79 = 1 23/ 1 79 = 0.570 ( 57 .0 %) 

The expected numbers for the various combinations of first and second occasion 
classification can be calculated in exactly the same way as argued in the two
category example. For the kappa statistic, we need these only for the numbers of 
agreements; these are shown in Table 36.3(b ) .  

giving 

Aexp = (59 .7 + 0. 1 + 6.9 + 0.2)/ 1 79 = 72.9/ 1 79 = 0.407 (40.7 %) 

r;, = 
A obs - Aexp = (0 .570 - 0.407)/( l - 0.407) = 0 .27 1 - Aexp 

representing poor to moderate agreement. 
As the number of categories increases, the value of kappa will tend to decrease, 

because there are more opportunities for misclassification . Further, for ordinal 
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measures we may wish to count classification into adjacent categories as partial 
agreement. For instance, classification into adjacent categories might count as 
50 % agreement, such as normal izers classified as somatizers and vice versa in 
Table 36 .3 .  This is done using a weighted kappa statistic, in which the observed and 
expected proportions of agreement are modified to include partial agreements, by 
assigning a weight between 0 (complete disagreement)  and I (complete agreement) 
to each category. Kappa statistics can also be derived when there are more than 
two raters: for more details see Fleiss ( 1 98 1 )  or Dunn ( 1 989) .  

Numerical variables: reliability and the intraclass correlation coefficient 

We now describe how to quantify the amount of measurement error in a numer
ical variable. As with the kappa statistic, this may be done using replicate meas
urements of the variable: for example measurement of blood pressure made on the 
same patient by two observers at the same time, or using the same automated 
measuring device on two occasions one week apart. 

The reliability of a measurement is formally defined as the ratio of the variance 
of the 'true' ( underlying) values between individuals to the variance of the ob
served values, which is a combination of the variation between individuals (a;, )  
and measurement error ca; ) .  I t  can be  measured using the  intraclass correlation 

coefficient ( ICC), defined in Section 3 1 .4 in the context of random-effects models: 

? 
I ntraclass correlation coefficient (ICC) = ? 

a,7 2 a;, + ae 
? . b a� = variance etween true measurements 

? . a; = measurement error variance 

Here the 'clusters' are the individuals on whom measurements are made, and the 
observations within clusters are the repeated measurements on the individuals. 
ICC can range from 0 to I ,  with the maximum of I corresponding to complete 
reliabil ity, which is when there is no measurement error, a; = 0.  The smaller 
the amount of measurement error, the smaller will be the increase in the variabi l ity 
of the observed measurements compared to the true measurements and the 
closer wil l  be the reliabil ity (and ICC) to I .  If all individuals have the same 
'true' value, then a;, = 0 and ICC = O; all observed variation is due to measure
ment error. 

The intraclass correlation coefficient may be estimated using a one-way analysis 
of variance (see Chapter 1 1 ) ,  or by using a simple random-effects model ( see 
Chapter 3 1 ) . When there are paired measurements, the ICC can also be derived 
by calculating the Pearson (product moment) correlation with each pair entered 
twice, once in reverse order. 
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Example 36. 5 
As part of a case-control study investigating the association between asthma and 
intake of d ietary antioxidants (measured using food frequency questionnaires), 
replicate measurements of selenium intake were made 3 months after the original 
measurements, for 94 adults aged between 1 5  and 50 years. Figure 36.2 is a scatter 
plot of the pairs of measurements; note that because estimated selenium intake 
was positively skewed the measurements are plotted on a log scale (see Chapter 
1 3) .  While there is clearly an association between the measurements on the first 
and second occasions, there is also substantial between-occasion variabil ity. 

The mean and standard deviation of log selenium intake (measured in log (base e) 
µg/week) in  the 94 subjects with repeat measurements were 3 .826 (s .d .  = 0.40 1 )  on 
the first occasion and 3 .768 (s .d .  = 0 .372)  on the second occasion.  There was some 
evidence that measured intake declined between the two measurements (mean 
reduction 0.058, 95 % CI -0.008 to 0 . 1 25, P = 0.083 ) .  The estimated components 
of variance were: 
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� Cl 1 00 3 
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E 
E ::J 
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Between-subject variance, <J,7 = 0.0955 
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Fig. 36.2 Scatter plot of weekly selenium intake (µg/week) on a log scale among 94 participants in a study 

of asthma and intake of antioxidant vitamins, measured using a food frequency questionnaire on two 

occasions three months apart. Data displays and ana lyses from the FLAG study (Shaheen SO, Sterne JAC. 
Thompson R L, Songhurst C E, Margetts BM, Burney PGJ (200 1 )  American Journal of Respiratory and Critical 
Care Medicine 1 64: 1 823-1 828). 
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J 
ICC = 7 u� 2 = 0.0955 /0. 1 49 1  = 0.64 1 0  

u;, + (}e 

Thus in this example, 64. I % of the total variability was between-subject variabil
ity, indicating fairly good reliabi l ity of assessing selenium intake using a single 
application of a food frequency questionnaire. 

Links between weighted kappa and the intraclass correlation coefficient 

For ordered categorical variables, there is a close l ink between the weighted kappa 
statistic (defined above) and the intraclass correlation coefficient . If the variable 
has k categories, and the weight, wu, for a subject in category i at the first 
measurement and j at the second measurement is chosen to be: 

(i -})2 
W .. = 1 - ---1/ 

(k - 1 )2 

then the value of the weighted kappa wil l  be very close to the ICC. For example, 
for an ordered categorical variable with four categories the weights would be 

0 wn = 1 111j, = 1 1 144 = I - - = 1 -- J 32 
1 2  

1112 1 = 11123 = IV32 = 1 1 134 = 1 1 143 = 1 - 32 = 0.889 

22 lllj' I = HIJ4 = W4? = I - - = 0.556 - - 32 
32 

1114 1 = I - 32 = 0 

3 6 . 4  N U M E R I CA L  VA R I A B L E S :  M E T H O D  C O M P A R I S O N  S T U D I E S 

We wil l  now consider ana lyses appropriate to method comparison studies, in which 
two different methods of measuring the same underlying ( t rue) value are com
pared . For example, Jung function might be measured using a spirometer, which is 
expensive but relatively accurate, or with a peak now meter, which is cheap (and 
can therefore be used by asthma patients at home) but relatively inaccurate. The 
appropriate analysis of such studies was described, in an innuential paper, by 
Bland and Altman ( 1 986) .  

Example 36. 6 
We wil l  i l lustrate appropriate methods for the analysis of method comparison 
studies using data on 1 236 women who participated in the British Women's 
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Regional Heart Study. The women were asked to report their weight as part of a 
general questionnaire, and their weight was subsequently measured using accurate 
scales. Figure 36 .3 i s  a scatter plot of self-reported versus measured weight .  

The two measures are clearly strongly associated: the  Pearson correlation 
between them is 0.982. It is important to note, however, that the correlation 
measures the strength of association between the measures and not the agreement 
between them. For example, if the measurements made with the new method were 
exactly twice as large as those made with the standard method then the correlation 
would be 1 ,  even though the new method was badly in error. Further, the 
correlation depends on the range of the true quantity in the sample. The correl
ation will be greater i f  this range is wide than if  i t  i s  narrow. 

The diagonal l ine in  F igure 36.3 is the line of equality: the two measures are in 
perfect agreement only if  all measurements lie along this line. I t  can be seen that 
more of the points l ie below the line than above it , suggesting that self-reported 
weight tends to be lower than measured weight. 

Bland and Altman suggested that the extent of agreement could be examined by 
plotting the differences between the pairs of measurements on the vertical axis, 
against the mean of each pair on the horizontal axis. Such a plot (often known as a 
Bland-Altman plot) is shown in Figure 36.4. I f  (as here) one method is known to be 
accurate, then the mean difference will tell us whether there is a systematic bias (a 
tendency to be higher or lower than the true value) in  the other measurement. In 
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Fig. 36.3 Scatter plot of self-reported versus measured weight (kg) in 1 236 women who participated in the 

British Regional Women's Heart Study. The solid l ine is the line of equality. Data displays and analyses by 

kind permission of Dr Debbie Lawlor and Professor Shah Ebrahim. 
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Fig. 36.4 Scatter plot (Bland-Altman plot) of self-reported minus measured weight (vertical axis) against 

mean of self-reported and measured weight (horizontal axis) in 1 236 women who participated i n  the British 

Regional Women's Heart Study. The dashed horizontal l ine corresponds to the mean difference {-0.93 kg) 

while the dotted horizontal lines correspond to the 95% l imits of agreement. 

this example, mean self-reported weight was 68.88 kg, while the mean measured 
weight was 69.85 kg. The mean difference between self-reported and measured 
weight was -0.93 kg (95 % CI - l .07 to -0.80 kg). There was thus a clear tendency 
for the women to under-report their weight, by an average of 0.93 kg. This is 
shown by the dashed horizontal line in Figure 36.4. 

The dotted horizontal l ines in Figure 36.4 correspond to the 95 °,1,, limits of 

agreement, given by the mean difference plus or minus twice the standard deviation 
of the differences . I f  the differences are normally distributed then approximately 
95 % of differences will lie within this range. In this example the 95 % limits of 
agreement are from -5 .5  l kg to 3 .65 kg. I nspection of Figure 36.4 also shows that 
the differences were negatively skewed; there were more large negative differences 
than large positive ones. Further, there was a tendency for greater (negative) 
differences with greater mean weight. 

Note that the difference should not be plolled against either of the individual 
measurements, because of the problem of 'regression to the mean' described in 
Section 36 .5 .  

Having calculated the mean difference and the 95 % l imits of agreement, i t  is for 
the investigator to decide whether the methods are sufficiently in agreement for 
one (perhaps the cheaper method) to be used in place of the other. I n  this example, 
the systematic underreporting of weight in questionnaires, and the reduced 
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accuracy, would have to be considered against the increased cost of invit ing 
women to a visit at wh ich their weight could be measured accurately. 

3 6 . 5  I M P L I CAT I O N S  F O R  I N T E R P R E TAT I O N  

The problems that may result from errors that occur when measuring outcome or 
exposure variables are summarized in Table 36.4 .  Each type of problem wi l l  be 
addressed in the sub-sections below. Note that the focus here is on random errors, 
in the sense that we are assuming that any errors in measuring a variable are 
independent of the values of other variables in the dataset. 

Table 36.4 Summary of implications of random misclassification and measurement error. 

Type of variable 

Outcome 

Exposure 

Regression di lution bias 

Type of error 

Misclassification 

(binary /categorical variable) 

Regression dilution bias 

Measurement error 

(numerical variable) 

Regression to the mean 

Regression di lution bias 

Potential problems if adjusting for confounders 

Regression d i lut ion bias means that the estimated regression coefficient of the 
exposure-effect estimate has been biased towards the null value of no exposure 
effect, so that the magnitude of the association between the exposure and outcome 
wil l  tend to be underestimated: 
1 For a numerical exposure variable, the degree of bias depends on the intraclass 

correlation coefficient ( ICC) .  For l inear regression the relationship is :  

Estimated coefficient = correct coefficient x ICC 

For other regression models, such as logistic regression and Cox regression, the 
same relationship holds approximately, providing that the correct coefficient is 
not too large, and that the measurement error variance is not too large com
pared to the variance between true measurements. Frost and Thompson (2000) 
compare a number of methods to correct for regression dilution bias. 

2 The estimated effect of a categorical (or binary) exposure variable can be 
corrected using replicate measurements on some or all individuals. However, 
methods to do this are more complex than those for numerical exposure 
variables, because the errors will be correlated ivith the true values. For example, 
if the true value of a binary variable is 0 then the size of the error i s  either 0 or 1 ,  
while i f  the true value i s  1 then the size is 0 or - l .  For this reason, applying 
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methods appropriate for numerical exposure variables will overcorrect the 
regression di lution in  the effect of a binary exposure variable. Appropriate 
methods for this situation are reviewed by White et al. (200 1 ) . 

3 For a binary outcome variable, if the sensi tivity and specificity with which it was 
measured are known then estimated odds ratios from logistic regression may be 
corrected, as described by M agder and Hughes ( 1 997). 

4 Measurement error in  a numerical outcome variable does not lead to regression 
di lution bias, although the greater the measurement error the lower the preci
sion with which exposure-outcome associations are estimated. 

As mentioned above, correcting for regression dilut ion bias requires that we make 
replicate measurements on some or all subjects. If each subject-evaluation costs the 
same amount, then we must trade off the benefits of increasing the number of 
subjects in our study with the benefits of increasing the number of measurements 
per subject. Phil l ips and Davey Smith ( 1 993)  showed that it wil l sometimes be 
better to recruit  a smal ler number of subjects with each evaluated on more than 
one occasion, because this leads to more precise estimates of subjects' exposure 
levels and hence to reduced bias in exposure effect estimates. They suggested that 
attempts to anticipate and contro l  bias due to exposure measurement error should 
be given at least as high a priority as that given to sample size assessment in  the 
design of epidemiological studies. 

Before applying any method to correct regression coefficients for measurement 
error, it is  important to be aware of the potential problems associated with 
measurement error in a number of exposure variables included in multivariable 
models, as described in the next sub-section. 

The effects of measurement error and misclassification in  multivariable 
models 

When there are measurement errors in a number of exposure variables, and we 
wish to contro l  for the possible confounding effects of each on the other, the 
effects are less straightforward to predict than is the case when we are considering 
the association between an outcome and a single exposure variable. For example, 
consider the situation in  which : 
1 the correct (underlying) value of exposure A is associated with the disease 

outcome, but is  measured with substantial error; 
2 the correct (underlying) value of exposure B is not associated with the d isease 

outcome after control l ing for exposure A; and 
3 the amount of measurement error in exposure B is much less than the measure-

ment error in exposure A .  
In  this situation, including A and B in a multivariable model may give the 
misleading impression that B is associated with the outcome, and that A is not 
associated with the outcome after controll ing for B: the opposite of the t rue 
situation if  there were no measurement error. 
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Such possible problems are frequently ignored. Note that the bias caused by 
differing amounts of measurement error in the two exposure variables may act in 
either direction, depending on: 
1 the direction of the association between the two variables; 
2 the relative amounts of error in measuring them; and 
3 whether the measurement errors are correlated. 

Regression to the mean 

Regression to the mean refers to a phenomenon first observed by Gatton when he 
noticed that the heights of sons tended to be closer to the overal l  mean than the 
heights of their fathers. Thus, tall fathers tended to have sons shorter than 
themselves, while the opposite was true for short fathers. 

The same phenomenon occurs whenever two repeat measurements are made, 
and where they are subject to measurement error. Larger values of the first 
measurement wil l ,  on average, have positive measurement errors while smaller 
values of the first measurement will, on average, have negative measurement 
errors. This means that the repeat measurement will tend to be smaller if the 
first measurement was larger, and larger if the first measurement was smaller. I t  
follows that the size o f  the first measurement will b e  negatively associated with the 
difference between the two measurements. 

The implications of this will be explained in more detail by considering the 
repeated measurement of blood pressure and the assessment of anti-hypertensive 
drugs in reducing blood pressure. For a more detai led discussion of regression to 
the mean, and methods to correct for it, see Hayes ( 1 988) .  

Example 36. 7 
Figure 36 .5 shows the relationship between two diastolic blood pressure readings 
taken 6 months apart on 50 volunteers, while Figure 36.6 is a scatter plot of the 
difference between the two readings (vertical axis) against the init ial reading 
(horizontal axis ) .  This gives the impression that there is a downward gradient, 
so that those with a high initial level have a reduced blood pressure 6 months later, 
while the opposite is true for those with an initial low level .  However, for the 
reasons explained above, this downward gradient may be the result of measure
ment error. If there is no association between the true reduction and the true initial 
value, the regression coefficient f3obs for the observed association between the 
difference and the initial value is given by: 

/3obs = ICC - 1 

in absence of 'true' association 
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Fig. 36.5 The relationship between two diastolic blood pressure readings taken six months apart on  50  

volunteers, showing little change on average. The straight l ine i s  the relationship that would be  seen i f  the 

readings on the two occasions were the same. 
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Fig. 36 .6  Change in diastolic blood pressure plotted against initial value. An  artificial negative correlation 

(r = -0.35, d.f. = 48, P = 0 .01 3 )  is observed. The straight line is the regression line corresponding to 

this association. 

Thus the greater the measurement error variance, the smaller is the ICC and so the 
greater is  the slope of this apparent negative association. 

Thus measurement error has important implications when the focus of interest 
is change in outcome measurement, for example in a clinical t rial to evaluate the 
abil ity of an anti-hypertensive drug to reduce blood pressure: 
1 I f, as is often the case, the trial is  confined to people with h igh init ial d iastolic 

blood pressure, say 1 20 mmHg or above, then it can be seen from Figure 36 .6 
that their repeated blood pressure measurements would show an average 
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reduction, even in the absence of any treatment. I t  is therefore essential to have 
a control group, and to compare any apparent reduction in the treatment group 
with that in the control group. 

2 Analyses investigating whether the size of any change in blood pressure is 
related to the initial value must correct for regression to the mean. Blomqvist 
( 1 977)  suggested that the true regression coefficient can be estimated from the 
observed regression coefficient using: 

f3 - f3obs + ( 1  - ICC) 
true - ICC 

To apply this method in practice requires an external estimate of the within
person (measurement error) variance. 

3 Oldham ( 1 962) suggested plotting the difference, BP2 - BP 1 ,  against the average 
of the initial and final blood pressure readings, 1/2 (BP1 + BP2 ), rather than 
against the initial reading as shown in Figure 36 .7, to correct for regression to 
the mean. (Note the similarity with Bland-Altman plots, described in Section 
36.4. ) The correlation is attenuated to -0. 1 9, suggesting that much or all of the 
apparent association between blood pressure reduction and initial blood pres
sure was caused by regression to the mean. However, there are at least two 
circumstances when this can give misleading results. The Oldham plot will show 
a posit ive association when the true change is unrelated to the initial level, if: 

• the true change differs between individuals; or 
• individuals have been selected on the basis of h igh initial values. 
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Fig. 36.7 Change in diastolic blood pressure plotted against the average of the initial and final readings, 

The correlation is attenuated to -0 . 1 9, suggesting little or no relationship  between BP2 - BP1 and blood 

pressure. 
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3 7  . 1  I N T R O D U CT I O N  

I n  this chapter we focus on the d i fferent measures that are used to assess the 
impact of an exposure or of a treatment on the amount of d isease in  a population. 

We start by summarizing the three di fferent ratio measures of the association 
between an exposure (or treatment) and outcome, used throughout the book, and 
show how these relate to measures of impact. 

3 7 . 2  M E A S U R E S  O F  A S S O C I AT I O N  

Table 37. 1 summarizes the three ratio measures that we use to assess the strength 
of the association between an exposure (or treatment) and an outcome. These are 
the risk ratio, the rate ratio and the odds ratio. 

Risk ratios 

A risk ratio > I implies that the risk of disease is higher in the exposed group than 
in the unexposed group, while a risk ratio < I occurs when the risk is lower in the 
exposed group, suggesting that exposure may be protective. A risk ratio of I occurs 
when the risks are the same in the two groups and is equivalent to no association 
between the exposure and the disease. The further the risk ratio is  from I ,  the 
stronger the association . See Chapter 1 6  for methods to derive confidence inter
vals for the RR.  
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Table 37 .1 Summary of ratio measures of the association between exposure and disease, and the different study 

designs in which they can be estimated. 

Study design(s) in which they can be estimated 

Definitions of different ratio measures 

R
. 

k 
. _ risk in exposed group 

1s ratio - . k . 
d ns m unexpose group 

Rate ratio = 
rate in exposed group 

rate in unexposed group 

Odds ratio = 
odds in exposed group 

odds in unexposed group 

Odds ratios 

Longitudinal 

(complete 

follow-up) 

Yes 

Yes 

Yes 

Longitudinal 

(incomplete 

follow-up) Cross-sectional Case-control 

No Yes No 

Yes No No 

No Yes Yes 

Interpretation of odds ratios is the same as that for risk ratios (see above), but 
the odds ratio is always further away from I than the corresponding r isk ratio. 
Thus: 
• if RR > I then OR > RR;  
• i f  R R < l then OR < RR. 
For a rare outcome (one in which the probabil ity of the event not occurring is  
close to 1 )  the odds ratio is approximately equal to the r isk ratio  (since the odds is  
approximately equal to the risk ) .  

Rate ratios 

While the calculation of the risk is based on the population at risk at the start of 
the study, the rate is based on the total person-years at risk during the study and 
reflects the changing population at risk. This was i l lustrated for a cohort study i n  
Figure 22.2.  When the outcome i s  not rare, the risk ratio wil l change over time, so 
that the rate ratio (providing that it is constant over time) may be a more 
appropriate measure of the association between exposure and d isease. In particu
lar, if all subjects experience the disease outcome by the end of the study, then the 
risk ratio wil l be I even if  the time to event was much greater in the exposed than 
the unexposed group (or vice versa) .  

Comparison of the rate ratio, risk ratio and odds ratio 

It was shown in Chapters 1 6  and 23 that for a rare outcome 

Risk � Odds � Rate x Time 

so that Risk ratio � Odds ratio � Rate ratio 
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For a common disease, however, the three measures are different, and wil l lead to 
three different measures of association between exposure and disease. The pre
ferred choice in longitudinal studies is to use rate ratios (or hazard ratios when 
data on times to event occurrences are available and disease rates change over 
time: see Chapter 26) .  The rate ratio is the only choice when follow-up is incom
plete, or individuals are followed for differing lengths of time. The use of risk 
ratios is more appropriate, however, when assessing the protective effect of an 
exposure or i ntervention, such as a vaccine, which it is  believed offers full protec
t ion to some individuals but none to others, rather than partia l  protection to al l  
(Smith et al. , 1 984). 

The risk ratio and odds ratio can both be estimated from longitudinal studies 
with complete fol low-up and from cross-sectional studies. Although the risk ratio 
would generally be regarded as more easily interpretable than the odds ratio, the 
odds ratio is often used because the statistical properties of procedures based on 
the odds ratio are generally better. In  case-control studies the odds rat io is always 
used as the measure of effect. 

3 7 . 3  M EA S U R E S  O F  T H E  I M PA CT O F  A N  E X P O S U R E  

We now show how ratio measures (of the strength of the association between 
exposure and disease) relate to measures of the impact of exposure. The formulae 
we present apply identically whether risks or rates are used . 

Attributable risk 

The risk ratio assesses how much more l ikely, for example, a smoker is  to 
develop lung cancer than a non-smoker, but it gives no indication of the magni
tude of the excess risk in  absolute terms. This is measured by the attributable 

risk: 

Attributable risk (AR) = risk among exposed - risk among u nexposed 

= the risk difference ( see Section 1 6 .3 )  

Example 37. 1 
Table 37 .2 shows hypothetical data from a cohort study to investigate the associ
ation between smoking and lung cancer. Thirty-thousand smokers and 60 000 
non-smokers were followed for a year, during which time 39 of the smokers and 
six of the non-smokers developed l ung cancer. Thus the risk ratio was: 
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Table 37 .2 Hypothetical data from a one year cohort study to investigate the association between 

smoking and lung cancer. The calculations of relative and attributable risk are i l l ustrated. 

Smokers 

Non-smokers 

Total 

Lung cancer 

39 

6 

45 

No lung cancer Total One year risk 

29 961 30 000 1 .30/1 000 

59 994 60 000 0.1 0/1 000 

89 955 90 000 

RR = � = 1 3 .0  AR = 1 .30 - 0. 1 0  = 1 2 0/1 000 Prop AR = � = 0.923 or 92.3 % 

RR = 
39 /30000 

= 
1 . 30 

= 
3 O 

6/60000 0 . 1 0  
l . 

so that there was a very strong association between smoking and lung cancer. The 
attributable risk of lung cancer due to smoking, given by the difference between 
the risks among smokers and non-smokers, was: 

AR = 1 . 30 - 0 . 1 0  = 1 . 20 cases per 1 000 per year 

Attributable risk is  sometimes expressed as a proportion (or percentage) of the 
total incidence rate among the exposed, and is then called the proportional attrib

utable risk, the attributable proportion (exposed), the attributable fraction (ex
posed) or the aetiologic fraction (exposed). 

. 
1 

risk among exposed - risk among unexposed 
Proport10na AR = ------.-----------

nsk among exposed 
(RR - 1 )  

RR 

I n  the example, the proportional attributable risk was 1 .20/ 1 . 30 = 0.923, suggest
ing that smoking accounted for 92.3 % of all the cases of lung cancer among the 
smokers. 

Comparing attributable and relative measures 

Example 37.2 
Table 37 .3  shows the relative and attributable rates of death from selected causes 
associated with heavy cigarette smoking. The association has been most clearly 
demonstrated for lung cancer and chronic bronchitis, with rate ratios of 32.4 and 
2 1 .2 respectively .  I f, however, the association with card iovascular d isease, 
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Table 37.3 Relative and attributable rates of death from selected causes, 1 951-1 961 , associated with 

heavy cigarette smoking by British male physicians. Data from Doll & Hill (1 964) British Medical Journal 1 ,  

1 399-1 41 0, a s  presented by MacMahon & Pugh (1 970) Epidemiology - Principles and Methods. Little, 

Brown & Co., Boston (with permission). 

Age-standardized death rate (per 1 000 person-years) 

Cause of death Non-smokers Heavy smokers R R  AR 

Lung cancer 0.07 2.27 32.4 2 .20 

Other cancers 1 .91 2 .59 1 .4 0.68 

Chronic bronchitis 0.05 1 .06 2 1 .2 1 .01  

Cardiovascular disease 7.32 9.93 1 .4 2 .61  

All causes 1 2 .06 1 9.67 1 .6 7.61 

although not so strong, is  also accepted as being causal ,  elimination of smoking 
would save even more deaths due to cardiovascular disease than due to lung 
cancer: 2 .6 1 compared to 2.20 for every 1 000 smoker-years at risk. Note that the 
death rates were age standard ized to take account of the di ffering age distributions 
of smokers and non-smokers, and of the increase in death rates with age (see 
Chapter 25). 

In summary, the risk (or rate) ratio measures the strength of an association 
between an exposure and a disease outcome. The attributable risk (or rate), on the 
other hand, gives a better idea of the excess risk of disease experienced by an 
individual as the result  of being exposed. 

Population attributable risk 

It is  important to realize that the overall impact of an exposure on d isease in 
the population also depends on how prevalent the exposure is. In population 
terms a rare exposure with a high associated risk ratio may be less serious in the 
total number (or proportion) of deaths that it will cause than a very common 
exposure with a lower associated risk ratio. The impact at the population level is 
assessed by the excess overal l  risk (or rate) in the population as compared with the 
risk (or rate) among the unexposed. The resulting measure is the population 

attributable risk: 

Population AR = overall risk - risk among unexposed 

This may also be expressed as a proportion (or percentage) of the overal l  risk. The 
result ing measure is the population proportional attributable risk, alternatively 
named the aetiologic fraction (population) or the attributable fraction ( popula
t ion) .  
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P 1 · 
. 

1 AR 
overall r isk - risk among unexposed 

opu at1on proport1ona = -------------

overall risk 
prevalenceexposure (RR - 1 )  

I + prevalenceexposure(RR - I ) 

Figure 37 . 1 shows how the value of the population proportional attributable 
risk increases independently with the prevalence of the exposure and with the size 
of the risk ratio. I f  all the population are exposed (prevalence = 1 00 %), then the 
value of the population proportional attributable risk is the same as the propor
tional AR (exposed) defined above. 
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Fig. 37 .1 Relationship between population proportional attributable risk and prevalence of exposure for 

various values of the risk ratio. 

Potential impact of reducing prevalence of exposure 

The population attributable and proportional attributable risks give a measure of 
the burden of d isease in the population associated with a particular exposure. 
They also give a measure of the impact that would be achieved by a totally 
successful intervention which managed to eliminate the exposure. This i s  a theor
etical maximum impact that is unl ikely to be realized in practice. For example, i t  is 
unl ikely that any approach to control smoking would result in al l smokers giving 
up. I f  the intervention reduces the prevalence of exposure by r o/o, then the actual 
impact will be as follows: 



37 .3 Measures of the impact of an exposure 453 

Percentage impact = r o/o  x Population proportional A R  

Example 37.3 
Figure 37 .2  i l lustra tes the difference between potential impact and population 
proportional attributable risk in a hypothetical population of 1 000 children, 
fol lowed for one year without loss to follow-up. There are 400 children exposed 
to a risk factor that is associated with a three-fold risk of death, and 600 children 
who are not exposed . The 600 children in the unexposed group experience a 
mortality rate of 50/ I OOO/year which means that 600 x 50/ 1 000 = 30 of them 
wil l d ie d uring the year. If the 400 children in the exposed group were at the same 
risk as the unexposed children, then 400 x 50 / I 000 = 20 of them would die. 
However, they are at  3 t imes this risk. Their mortal i ty rate is therefore 
1 50/child/year, which translates into 400 x 1 50/ I OOO = 60 deaths during the 
year, an excess of 40 deaths associated with exposure. Thus if  it were possible to 
eliminate exposure to the risk factor, the total number of deaths per year would be 
reduced by 40, giving a total of 50 rather than 90 deaths a year. The population 
proportional attributable risk, which is the percentage of deaths attributable to 
exposure, equals 40/90, or 44 %. 

Suppose now that an intervention took place which successful ly reduced the 
prevalence of exposure by one half, that is from 40 % to 20 %. The right hand 
panel in  Figure 37.2 shows that there would then be 70 deaths a year. As the 
size of the exposed group would be halved, the number of excess deaths 

[=:J Unexposed [=:J Exposed CJ Excess deaths [=:J Deaths saved 

400 
RR=3 

600 

Population 

Proportional AR 
= 40/90 = 44% 

Pre-intervention 

40 
Excess 

deaths 

20 

3 0  

Deaths 

200 
RR=3 

800 

Population 

Im pact 20 
=20/90 =22% Deaths 

---

Post-intervention 

saved 

20 
Excess 

deaths 

40 

Deaths 

Fig. 37 .2 Example showing potential impact of an intervention, assuming (i) 40% of population exposed 

pre-intervention, (ii) RR associated with exposure equals 3, (iii) mortality rate among unexposed equals 

50/1 000/year, and (iv) the intervention reduces the prevalence of exposure by 50%. 
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would also be halved, and would now be 20 rather than 40. Such an intervention 
would therefore prevent 20 of the pre-intervention total of 90 deaths. That is, its 
impact would be 20 /90, or 22%. 

3 7 . 4  M E A S U R E S  O F  T H E  I M PA C T  O F  A T R E AT M E N T  O R  

I N T E R V E N T I O N  

Efficacy 

The efficacy of a treatment or intervention is measured by the proportion of cases 
that it prevents. Efficacy is directly calculated from the risk ratio (or rate ratio) 
comparing disease outcome in the treated versus control group. For a successful 
treatment (or intervention) this ratio will be less than 1 .  

Efficacy = I - RR 

Example 37.4 
Table 37.4 shows the hypothetical results from a randomized controlled trial of a 
new influenza vaccine. A total of 80 cases of influenza occurred in the placebo 
group. I f  th is group had instead received vaccination one would have expected 
only 8 . 3  % ( the rate experienced by the vaccinated group) of them to have de
veloped influenza, that is 220 x 0.083 = 1 8 . 3  cases. The saving would therefore 
have been 80 - 1 8 . 3  = 6 1 .7 cases, giving an efficacy of 6 1 .7 /80 = 77 .2 %. 

The efficacy can be calculated directly from the risk rat io, which gives the risk in 
the vaccinated group as a proportion of the risk in the control group. If the 
vaccination had no effect, the risks would be the same and the risk ratio would 
equal 1 .  In this case, the risk is considerably lower in the vaccine group. The risk 
ratio equals 0.228, considerably less than 1 .  In other words the risk of influenza in 
the vaccine group is only 0.228 or 22 .8 % of that in the placebo group. The vaccine 
has therefore prevented 77.2 % of influenza cases. 

Table 37 .4 Results from an influenza vaccine trial, previously presented in Table 1 6.2. 

Influenza 

Yes No Total 

Vaccine 

Placebo 

20 (8.3 %) 

80 (36.4 %) 

220 (91 .7 %) 

1 40 (63.6 %) 

240 

220 

Total 1 00 (2 1 .7 %) 360 (78.3 %) 460 

20/240 0.083 . RR = 
801220 

= 
0.364 

= 0.228, Efficacy = 1 - 0.228 = 0.772, or 77.2 % 
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The confidence interval for efficacy is calculated from the confidence interval for 
risk ratio, as follows. Recall from Section 1 6 .5 that: 

95 % CI  (RR)  = RR/EF to RR x EF, 

where EF = exp [ l  .96 x s.e . (log RR)] 

and s .e .( log R R )  = J[(l /d1 - 1 /11 1 )  + ( I /do - 1 /no)] 

Since efficacy equals one minus RR, its 95 % confidence interval is obtained by 
subtracting each of the RR confidence l imits from one. 

95 % CI  (Efficacy) = I - RR x EF to l - RR/EF 

Note that the lower efficacy l imit  is obtained from the upper RR l imit ,  and the 
upper efficacy limit from the lower RR limit. In  this example: 

s . e . ( log RR) = J[( I /20 - 1 /240) + ( I  /80 - 1 /220)] = 0.23 1 9  

E F  = exp( l .96 x 0.23 1 9) = exp(0.4546) = 1 . 5755 

95 % Cl  (RR) = RR/EF to RR x EF = 0 .228/ 1 . 5755 to 0.228 x 1 . 5755 

= 0 . 1 45 to 0 .359 

95 % C I  ( Efficacy) = 1 - RR x EF to 1 - RR/EF = 1 - 0 .359 to I - 0. 1 45 

= 0.64 1  to 0 .855 

Thus the 95% confidence in terval for the efficacy of this influenza vaccine is  from 
64. 1 % to 85 .5%. 

Number needed to treat 

An additional way of measuring the impact of treatment, which has become 
popular in recent years, is the number needed to treat (NNT). This is the number 
of patients who we must treat in order to prevent one adverse event. It is defined 
as: 

I 
Number needed to treat (NNT) = I . 

k d " fc I ns 1 1erence 

The vertical bars in the formula mean the absolute value of the risk d i fference, that 
is the size of the risk difference ignoring its sign. NNT is best used to i l lustrate the 
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l ikely impact of treatment given a range of possible risks of the outcome event in  
the treated population. 

Example 37. 5 
Consider the effect of a new treatment that reduces the risk of death fol lowing 
myocardial infarct ion by 25 % (risk ratio = 0 .75) .  The impact of using such a 
treatment will depend on the frequency of death fol lowing myocardial infarction. 
This is i l lustrated in Table 37.5, which shows that if the risk of death is 0 .5  then 
1 25 l ives will be saved by treating 1 000 patients with the new treatment, while if 
this risk of death is 0 .02 then only five lives will be saved. The reduction in the 
number of deaths is  simply the risk difference multiplied by the number of patients 
( risk difference = risk of event in treated patients minus risk of event in  control 
patients). Therefore the risk difference measures the impact of treatment in redu
cing the risk of an adverse event in the same way that the attributable risk 
measures the impact of exposure in increasing the risk of an adverse event .  

The values of the NNT are also shown in  the table. When the risk of death in the 
absence of treatment is 0 .5 ,  the NNT equals l /0. 1 25 = 8. Thus we will prevent one 
death for every eight patients treated. I f, on the other hand, the risk of death in the 
absence of treatment is  only 0 .02, the NNT equals 1 /0.005 = 200, meaning that we 
wil l prevent one death for every 200 patients treated. 

Table 37.5 Number of deaths in 1 000 patients suffering a myocardial infarction according to whether a new 

treatment is used, assuming different risks of death in the absence of the new treatment and a treatment risk ratio 

of 0.75. 

Risk of death Number of deaths 

Current New Risk Current New Reduction in  

treatment treatment difference treatment treatment number of deaths NNT 

(a) (b) = 0.75 x (a) (c) = (b) - (a) (d) = 1 000 x (a) (e) = 1 000 x (b) (f) = (d) - (e) (g) = 1 /l(cll 

0.5 0.375 -0 . 125  500 375 1 25 8 

0 . 1  0.075 -0.025 1 00 75 25 40 

0.02 0.01 5 -0.005 20 1 5  5 200 

Number needed to harm 

I t  is important to distinguish between beneficial effects of a treatment ( risk ratio 
< 1 ,  risk difference < 0) and harmful effects (risk ratio > l ,  risk difference > 0) .  I f  
the treatment is  harmful then the NNT is referred t o  a s  the number needed to harm 

(NNH) .  This can be useful to assess the adverse impact of a treatment which has 
known side effects. For example, i f  our treatment for myocardial i nfarction was 
known to increase the risk of stroke, we might compare the number of patients 
treated to cause one stroke (NNH) with the number of patients treated to prevent 
one death (NNT). 
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Note that i f  the treatment has no effect ( risk ratio = I , risk difference = 0 )  then 
the NNT is 1 /0 = oo ( infinity) .  This has a sensible interpretation: if the treatment 
is  ineffective then we wil l not prevent any outcome events however many patients 
we treat. However problems can arise when deriving confidence intervals for  the 
NNT, if  one l imit of the CI  is close to the point of no treatment effect .  

3 7 . 5  E S T I M AT E S  OF A S S O C I A T I O N  A N D  I M PACT F R O M  

M U LT I VA R I A B L E  A N A LY S E S  

In  most circumstances, multivariable analyses are based o n  ratio measures o f  the 
effect of exposure or treatment .  This is because, both on theoretical grounds and 
on the basis of experience, the assumption of no in teraction between the exposure 
and confounding variables is  more l ikely to hold (at least approximately) for ratio 
measures. In  the context of randomized trials, there is good empirical evidence 
that meta-analyses based on risk differences tend to be more heterogeneous than 
meta-analyses based on risk ratios or odds ratios (see Engels el al. , 2000; or Egger 
et al. , 200 1 ,  pages 3 1 3-335 ) .  

I t  is therefore usually sensible to derive a ratio estimate of the  strength of  
association in a mult ivariable analysis of  an  observational study or meta-analysis 
of randomized trials, whatever measure of impact is required. Estimates of NNT 
or NNH are then derived by considering a range of levels of risk in the unexposed 
group, and/or prevalence of exposure. 
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3 8 . 1  I N T R O D U CT I O N  

I t  i s  essential to plan and conduct statistical analyses i n  a way that maximizes the 
quality and interpretabil ity of the findings. In  a typica l study, data are collected on 
a large number of variables and it can be difficult to decide which methods to use 
and in  what order. In this final chapter we present general guidelines on strategies 
for data analysis. 

3 8 . 2  A N A LY S I S  P L A N  

The formulation o f  a written plan for analysis i s  recommended. The extent to 
which i t  is possible to plan analyses in  detail will depend on the type of study being 
analysed : 
• For a randomized control led trial (RCT), which by its nature addresses a set of 

clearly defined questions, the analysis plan is usually specified i n  detai l .  I t  wil l  
include the precise definit ion of primary and secondary outcomes, the statist ical 
method to be used, guidelines on whether to adjust for basel ine variables and, 
possibly, a small number of planned subgroup analyses. See Section 34.2 for a 
description of the analysis of RCTs. 

• For an observational study, which is exploratory in nature, i t  is often not 
possible to completely specify a plan for the analysis. However i t  is helpful to 
write down, in  advance, the main hypothesis or hypotheses to be addressed . 
This wil l include the definitions of the outcome and exposure variables that wil l 
be needed to answer these question(s), the variables thought a priori to be 
possible confounders of the exposure-outcome association(s) and a small 
number of possible effect modifiers. 

Well-written analysis plans both serve as a guide for the person conduct ing 
the analysis and, equally importantly, aid the interpretation and reporting of 
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results .  For example, if we find evidence of a subgroup effect ( interaction) we 
should report whether this was speci fied a priori or whether it is an unexpected 
finding. 

3 8 . 3  D A T A  C H E C K I N G  

Careful checking and ed iting of the data set are essential before statistical 
analysis commences. The first step is to examine the distribution of each of 
the variables to check for possible errors. For categorical variables, this 
means checking that al l  observations relate to al lowed categories, and that the 
frequencies in each category make sense. For numerical variables, range checks 

should be performed to search for values fall ing outside the expected range. 
H istograms can also be used to look for 'outliers' that look extreme relative to 
the rest of the data. 

The next step is to conduct consistency checks, to search for cases where two or 
more variables are inconsistent .  For example, if sex and parity are recorded, a 
cross-classification of the two can be used to check that no males were recorded 
with a parity of one or more. Scatter plots can be useful for checking the 
consistency of numerical variables, for example of weight against age, or weight 
against height .  Further outl iers can be detected in this way. 

Possible errors should be checked against the original records. In some cases i t  
may be possible to correct the data. In other cases, it may be necessary to insert a 
missing value code if it is certain that the data were in error ( for example an 
impossible birth weight) .  In  borderl ine cases, where an observation is an outl ier 
but not considered impossible, it is generally better to leave the data unchanged . 
Strictly speaking, the analysis should then be checked to ensure that the conclu
sions are not affected unduly by the extreme values (either using sensitivity 
analyses in  which the extreme values are excluded, or by examining influence 
statistics; see Section 1 2 . 3 ) .  Note that when numerical val ues are grouped into 
categories before analysis, a small number of outliers are unlikely to have a 
marked influence on the results . 

For studies in  which individuals are classified as with and without disease, 
checks should generally be made separately in the two groups, as the distributions 
may be quite different .  

3 8 . 4  I N I T I A L  A N A L Y S E S  

Descriptive analysis 

Once the data have been cleaned as thoroughly as possible, the distributions of 
each of the variables should be re-examined (see Chapter 3), both ( i )  as a final 
check that required corrections have been made, and ( i i )  to ga in an understanding 
of the characteristics of the study population. Individuals with and without disease 
should again be examined separately. 
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Specifying variables for analysis 

I n  addressing a particular question we will need to specify both the outcome 
variable and the exposure variable or variables (see Section 2 .4) .  In observational 
studies, the control of confounding (see Chapter 1 8) is  a key issue in the analysis, 
and so we should identify :  
1 variables believed in  advance to confound the exposure-outcome association 

(a priori confounders); and 
2 other variables to be investigated as possible confounders, since a plausible 

argument can be made concerning their relationship with the exposure and 
outcome variables, but for which there is l itt le or no existing evidence. 

We should also specify any variables considered to be possible effect-modifiers: i n  
that they modify the size o r  even the direction of  the exposure-outcome associ
ation. As described in Sections 1 8 .4 and 29 .5, effect modification is examined 
using tests for in teraction. 

I n  practice, variables may play more than one role in an analysis. For example, 
a variable may confound the effect of one of the main exposures of i nterest, but  i ts 
effect may also be of i nterest in i ts own right. A variable may be a confounder for 
one exposure variable and an effect-modifier for another. Many studies have an 
exploratory element, in  that data are collected on some variables which may t urn 
out to be important exposures, but if they do not they may still need to be 
considered as potential confounders or effect-modifiers. 

Data reduction 

Before commencing formal statistical analyses, it may be necessary to derive new 
variables by grouping the values of some of the original variables, as explained in 
Section 2 .3 .  Note that the original variables should always be retained in the dataset; 
they should never be overwritten. 

Grouping of categorical exposure variables i s  necessary when there are large 
numbers of categories (for example, if occupation is recorded in detail ) .  If there 
is  an unexposed category, then this should general ly be treated as a separate group 
(e.g. non-smokers) .  The exposed categories should be divided into several groups; 
four  or five is  usually sufficient to give a reasonable picture of the risk relation
ship. 

Grouping of numerical exposure variables may be necessary in order to: 
1 use methods based on stratification (see Chapters 1 8  and 23) ,  as recommended 

for the in i tia l  examination of confounding (see below); 
2 use graphical methods to examine how the level of a non-numerical outcome 

changes with exposure level (see Section 29.6); and 
3 to examine whether there is a l inear association between a numerical exposure 

variable and a non-numerical outcome (see Section 29.6). 
Note that grouping entails loss of inforrnation: after checking l inearity assumptions 
or performing initial analyses using the grouped variable i t  may be appropriate 
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to use the original variable, or a transformation of the original variable ( see 
Chapter 1 3 ) ,  in the final analysis. 

One strategy for numerical exposures is to divide the range of the variable using, 
say, quinti les, to give five groups with equal numbers of subjects in  each group. 
This helps to ensure that estimates of effect for each category are reasonably 
precise, but can sometimes obscure an important effect i f  a few subjects with 
very high levels are grouped with others with more moderate levels. Alternatively, 
cut-off points may be chosen on the basis of data from previous studies, the aim 
being to define categories within which there is thought to be relat ively l i t tle 
variation in risk. Using standard cut-off points has the advantage of making 
comparisons between studies easier. For example, Table 38 . 1 shows the different 
possibi li ties for including body mass index ( BM I) ,  defined as weight/(height2 ) ,  in 
an analysis to examine its association with a disease outcome. 

For variables included in the analysis as co1�f'ounders, three or four categories 
may be sufficient to remove most of the confounding. However, more categories 
will be needed if the confounding is strong, as would often be the case with age, for 
example. It is often necessary to examine the strength of the association between 
the potential confounder and the outcome variable before decid ing on the number 
of categories to be used in analysis. The weaker the association, the more one may 
combine groups. However it would be unwise to combine groups with very 
different risks or rates of disease. 

A further consideration is that for ana lyses of binary or time-to-event outcomes, 
groups in which there are no, or very few, outcome events must be combined with 
others before inclusion in analysis. 

Table 38.1 Possible ways of deriving variables based on measured body mass index (BMI) .  

Choice 

(i) Original variable 

(ii) A transformation of the original variable (for example log BM!) 

(i i i) Quintiles of BMI ,  coded 1 -5 
(iv) Quintiles of BM I, coded as the median BMI in each quintile 

(v) Standard cut-offs for BMI focusing on high levels of BMI as risky 

( < 25 = normal; 2 5-30 = overweight; :;:: 30 = obese) 

(vi) Standard cut-offs including an underweight group 

( < 20 = underweight; 20-25 = normal; 25-30 = overweight; :;:: 30 = obese) 

Univariable analyses 

I t  is usually helpfu l  to begin with a un ivariable analysis, in which we examine 
the association of the outcome with each exposure of interest ,  ignoring all 
other variables. This is often called the crude association between the exposure 
and the outcome. Although later analyses, control l ing for the effects of 
other variables, wil l  supersede this one, it is sti l l  a useful stage of the analysis 
because: 
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1 Examination of simple tables or graphs, as well as the estimated association, can 
give useful information about the data set. For example, it can show that there 
were very few observations, or very few outcome events, in  particu lar exposure 
categories. 

2 These analyses will give an init ial idea of those variables that are strongly 
related to the d isease outcome. 

3 The degree to which the crude estimate of effect is altered when we control for 
the confounding effects of other variables is a useful indication of the amount of 
confounding present (or at least, the amount that has been measured and 
successfully removed ) .  
For exposures with more than two levels, one of the levels has  to be chosen as 

the baseline ( see Section 1 9.2) .  Often this will be the unexposed group or, if 
everyone is exposed to some extent, the group with the lowest level of exposure. 
If there are very few persons in this group, however, this will produce exposure 
effect estimates with large standard errors. I t  is then preferable to choose a larger 
group to be the baseline group. 

3 8 . 5  A L L O W I N G  F O R  C O N F O U N D I N G  

This section should be read i n  conjunction with Section 29.8, which describes 
general issues in the choice of exposure variables for inclusion in a regression 
model .  

In  any observational study, the control of confounding effects wil l be a major 
focus of the analysis. We have two tools available for this task: classical ( Mantel
Haenszel )  methods based on stratification, and regression modell ing. We have 
emphasized the similarities between the two approaches (see Chapters 20 and 24), 
so they should not be seen as in conflict. Regression methods controlling for the 
effect of a categorical variable involve exactly the same assumptions, and hence 
give essentially the same results, as Mantel-Haenszel methods stratifying on the 
categorical variable. 

A major reason for using classical methods in the initial phase of the analysis 
is  that the output encourages us to examine the exposure-outcome association 
in each stratum, together with the evidence for interaction (effect modification ) .  In 
contrast, it is easy to use regression models without checking the assumption 
that there is  no interaction between the effects of the different variables in  the 
model .  

However, regression models are generally the best approach when we wish to 
control for the effects of a number of confounding variables, because stratifying 
on the cross-classification of all the confounders is l ikely to produce a large 
number of strata. As explained in Section 29.5, by assuming in regression models 
that there is no interaction between the effects of confounding variables, we can 
greatly reduce the number of strata (the number of parameters used to model the 
effect of the confounders) .  In addition, dose-response effects can be examined 
more flexibly in regression models (see Section 29.6) .  
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The need for external knowledge in assessment of confounding 

As explained in Chapter 1 8, a confounding variable, C, is one that is associated 
with both the exposure variable (E) and the outcome variable ( D), and is not on 
the part of the causal chain leading from E to D. It is important to realize that 
external knowledge is more important than statistical strategies in choosing appro
priate confounders to be contro l led for in examining a particular exposure-out
come association. This is because statistical associations in the data cannot, on their 
own, determine whether it is appropriate to control for the effects of a particular 
variable. 

Example 38. 7 
I n  their article on the appropriate control of confounding in studies of the 
epidemiology of birth defects, Hernan el al. (2002) considered the fol lowing 
example. Should we contro l  for C, a binary variable which records the event 
that the pregnancy ended in sti l lbirth or therapeutic abortion, when examining 
the association between folic acid supplementation in early pregnancy ( the expos
ure variable, E) and the risk of neural tube defects (the outcome, D) using data 
from a case-control study? They pointed out that control l ing for C would not be 
the correct analysis, although: 
1 controlling for the effect of C leads to a substantial change in  the estimated 

association between E and D; and 
2 C is strongly associated with both E and D, and is not on the causal pathway 

between them. 
The reason is that C is affected by both E and D, rather than having any influence 
on ei ther of them . Therefore C, in this instance, cannot confound the E-D associ
ation. Yet it is not uncommon to find epidemiological analyses controll ing for C in  
situations such as th i s .  Note that restrict ing the analysis to l ive births ( i .e .  consider
ing only one of the stra ta defined by C) will also produce a biased estimate of the E
D association in this situation . 

This example shows that careful consideration of the l ikely direction of associ
ations between E, D and C is required in order to decide whether it is appropriate 
to control for C in estimating the E-D association. Figure 38 . 1 gives examples of 
circumstances in which C will and will not confound the E-D association . 

Example 38.2 
Because of the frequent in troduction of new antiretrovira l  drugs for treatment of 
HIV-infected persons, and the large number of different possible combinations of 
these, many relevant  questions about the effect of different drugs or drug  combin
ations have not been addressed in randomized trials with 'hard' outcomes such as 
development of A I DS or death .  There is therefore great interest in  using longitu
dinal studies of H I V-infected individuals to address these questions. 

Consider a comparison of drug regimens A and B .  Because antiretroviral 
therapy may involve taking a large number of pills per day, and may have serious 
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(a) Situations in which C is a confounder for the E-D association. 
(......._ ) non-causal association; (-+) causal association. 

(b) Situations in  which C i s  not a confounder for the E-D association. 

E 

c 

Fig. 38.1 Circumstances in which C wil l  and wil l not confound an exposure-disease (E-D) association. 

(Adapted from Case Control Studies MEB2 by James J .  Schlesselman, copyright 1 982 by Oxford University 

Press, Inc., with permission.) 

side-effects, adherence to the prescribed regime is l ikely to be associated both 
with the probabil i ty of progressing to AIDS (D) and with the drug  regimen 
(E ) .  However, in this example the drug regimen used is likely to influence adherence 
lo therapy. I t  would not, therefore, be appropriate to contro l  for adherence i n  
estimating t he  E-D association, a s  i t  wil l  b e  on  the pathway between them. 

Example 38.3 
The 'fetal origins' hypothesis suggests that there are associations between prenatal 
growth, reflected in measures such as birthweight, and adult heart disease. 
Huxley et al. (2002) reviewed 55 studies that had reported associations between 
birthweight (exposure) and later systolic blood pressure (outcome) .  Almost 
all of the reported regression coefficients were adjusted for adult weight .  However, 
these need to be interpreted with caution since adult weight is on the causal 
pathway between birthweight and blood pressure. Removing the adjustment 
for adult weight, in 1 2  studies, halved the size of the estimated associat ion. 
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38.6 Analysing for interactions 465 

Taking into account the need to combine external knowledge with statist ical 
associations, we recommend the following strategy for choosing confounders: 
1 Formulating a conceptual, hierarchical framework for the relationships 

between the differen t  variables and the disease outcome is strongly recom
mended, as described by Victora el al. ( 1 997) in the context of determinants 
of childhood diarrhoea mortality .  This is  particularly useful both as a way of 
summarizing existing knowledge and for clarifying the direct ion of any associ
ations. 

2 As a general rule, variables that are known a priori to be important confoun
ders, based on previous work should be controlled for in the analysis. 

3 In addit ion, other possible confounders may be selected as a result of explora
tory analysis. This should be: 

• restricted to variables that are associated with both the outcome and 
exposure, and are not on the causal pathway between them; 

• based on both the data being analysed and external knowledge, and after 
careful consideration of the direction of associations. 

4 Note, however, that for multiple linear regression, all exposure variables that are 
clearly associated with the outcome should be included when estimating the 
effect of a particular exposure, whether or not they are confounders (with the 
exception that variables on the causal pathway between the exposure of interest 
and the outcome should not be included; see Section 29. 8 ) .  

5 Note also that  automated 'stepwise' regression procedures are unl ikely to  be 
appropriate in analyses whose aim is to estimate the effect of particular expos
ures (see Section 29 . 8 ) .  

3 8 . 6  A N A LY S I N G  F O R  I N T E R A CT I O N S  

Three sorts o f  in teraction may be distinguished: 
1 Interaction betiveen confounders. The main difference between regression models 

and classical methods is  that classical methods always allow for all interactions 
between confounders. This is in fact usually unnecessary. 

2 Interaction betiveen a confounder and an exposure of interest. Strictly speaking, 
the calculation of exposure effect estimates controlled for  confounding variables 
is appropriate only if the exposure effect is  the same for all levels of the 
confounder. In practice, of course, the effect will vary to at least some extent 
between strata; in other words there is  l ikely to be some interaction between the 
exposure and the confounders controlled for in the analysis. In the presence of 
substantial interaction, the stratum-specific effects of the exposure should be 
reported. 

3 Interaction between exposures of interest . If present, this may be of importance 
both for the scientific interpretation of an analysis and for its implications for 
prevent ive in tervention. 



466 Chapter 38: Strategies for analysis 

An exhaustive search for interactions with all possible variables, however, is  
unl ikely to be usefu l .  Formal tests for interaction lack power, and statistically 
significant interactions identified by a systematic sweep of all variables may well 
be chance effects, while real interactions may go undetected . Sample sizes are 
typically inadequate to have high power of detecting any but the strongest inter
actions (see Section 35 .4) .  Combining groups in the interaction parameter may 
i ncrease the power of tests for interaction ( see Section 29 .5) .  

The purpose of a statistical analysis is to provide a simplified but useful picture 
of reality. I f  weak interactions are present, this is probably of l it t le intrinsic 
interest, and the calculation of an overal l  pooled estimate of effect for an individ
ual exposure is  a reasonable approximation to the truth. 

For these reasons, we suggest delaying analysis for interactions lo the final 
analysis. Exposure-exposure and exposure-confounder interactions should then 
be examined, paying particular attention to those thought a priori to be worth 
investigation. These should be examined one at a time, to avoid a model with too 
many additional parameters. In assessing the evidence for in teractions, as much 
attention should be paid to the presence of meaningful trends in effect estimates 
over the strata, as to the results of formal tests for interaction. 

3 8 . 7  M A K I N G  A N A L Y S E S  R E P R O D U C I B L E  

I n  the early stages o f  a statistical analysis i t  i s  useful t o  work interactively with the 
computer, by trying a command, looking at the output, then correcting or refining 
the command before proceeding to the next command. However, we recommend 
that all analyses should eventually be done using fi les (programs) containing l ists 
of commands. 

I t  is usually the case that, after analyses are first thought to be complete, 
changes are found to be necessary. For example, more data may arrive, or 
corrections may be made, or it may be discovered that an important confounder 
has been omitted. This often means that the whole analysis must be performed 
again.  If analyses were performed interactively, this can be a daunting task. The 
solution is to ensure that the whole analysis can be performed by running a series 
of programs. 

A typical series of programs is i l lustrated in Table 38 .2 .  We strongly recommend 
that you add frequent comment statements to your programs, which explain what 
is  being done in each section; especially in complicated or long programs. This is 
useful for other members of the project team, and also invaluable when returning 
to your own program some time later to rerun i t  or to modify it for a new analysis. 
It is  also important to document the analysis by recording the function of each 
program file, and the order in which they should be run. 

Following this strategy has two important consequences. Firstly, it wil l  now be 
straightforward to reproduce the entire analysis after corrections are made to the 
raw data. Secondly, you will always be able to check exactly how a derived 
variable was coded, which confounders were included in a particular analysis, 
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Table 38.2 Typical sequence of programs to perform the analyses needed to analyse a particular exposure

outcome association. 

Program 1 :  

Program 2 :  

Program 3 :  

Program 4: 

Program 5 :  

Read the raw data file into the statistical package, label variables so that it is easy to 

identify them, check that they have the correct value ranges, check consistency between 

variables, create derived variables by recoding and combining variables, save the resulting 

dataset 

Use the new dataset to examine associations between the outcome variable and the 

exposures and confounders of interest, by producing appropriate graphs and tables and 

performing univariable analyses 

Use Mantel-Haenszel and regression analyses to estimate exposure effects controlled for 

potential confounders 

Examine interactions between exposures and between exposures and confounders 

Produce final tables for the research report 

and so on.  Remember that reviewers' comments on a draft manuscript that was 
submitted for publication tend to be received many months after the paper was 
submitted (and even longer after the analysis was done). Minor modifications to 
the analysis wil l be stra ightforward if the analysis is reproducible, but can waste 
huge amounts of time if i t  is not. 

3 8 . 8  C O M M O N  P I T F A L L S  I N  A N A LY S I S  A N D  I N T E R P R ET AT I O N  

Even when the analyses of primary interest are specified at the start of the study, a 
typical analysis will involve choices of variable groupings and modell ing strategies 
that can make important differences to the conclusions. Further, it is common to 
investigate possible associations that were not specified in advance, for example if 
they were only recently reported. Three important reasons for caution in  inter
preting the results of analyses are: 
1 Multiple comparisons. Even if there is no association between the exposure and 

outcome variables, we would expect one in twenty comparisons to be statistic
ally significant at the 5 % level .  Th us the interpretation of associations in  a study 
in which the effect of many exposures was measured should be much more 
cautious than that for a study in which a specific a priori hypothesis was 
specified. Searching for all possible associations with an outcome variable is 
known as 'data-dredging' and may lead to dramatic but spurious findings. 

2 Subgroup analyses. We should be particularly cautious about the interpretation 
of apparent associations in  subgroups of the data, particularly where there is  no 
convincing evidence of an overal l  association (see Section 34.2) .  I t  is extremely 
tempting to emphasize an ' interest ing' finding in an otherwise negative study. 

3 Data-driven comparisons. A related problem is that we should not group an 
exposure variable in order to produce the biggest possible association with the 
outcome, and then interpret the P-value as if this had always been the intended 
comparison .  For example, when rearranging ten age groups into two larger 
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groups, we could compare I with 2-1 0  or I and 2 with 3-1 0  and so on. I f  we 
choose a particular grouping out of these nine possible ones because it shows 
the largest difference between 'younger' and 'older' ind ividuals, then we have 
chosen the smallest P-value from nine possible ones. It is sensible to decide how 
variables will be grouped as far as possible before seeing how different group
ings affect the conclusions of your study. 

These problems do not mean that al l studies must have hypotheses and methods of 
analysis that are specified at the outset . However, the interpretation of a finding 
wil l be affected by its context. If a reported association is  one of fifty which were 
examined, this should be clearly stated when the research is reported. We would 
probably view such an association (even with a small P-value) as generating a 
hypothesis that might be tested in future studies, rather than as a definitive resul t .  

3 8 . 9  C O N C L U S I O N S  

I n  all but the simplest studies, there is no single 'correct' analysis or answer. Fast 
computers and excellent statistical software mean that i t  is  easy to produce 
statistical analyses. The challenge to medical statisticians is to produce analyses 
that answer the research question as clearly and honestly as possible. 
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Table A1 Areas in tail of the standard normal distribution. 

Adapted from Table 3 of White et al. (1 979) with permission of the authors and publ ishers. 

Ta b u l ated a rea : proportion of the a rea 
of the standard normal  d istri bution that is 
above z 
' I W'� 

0 z 

Second decimal place of z 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
0.2 0.4207 0.41 68 0.41 29 0.4090 0.4052 0.401 3 0.3974 0.3936 0.3897 0.3859 

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3 1 92 0.3 1 56 0.31 21 

0.5 0.3085 0.3050 0.301 5 0.2981 0.2946 0.291 2 0.2877 0.2843 0.281 0 0.2776 

0.6 0.2743 0.2709 0.2676 0.2643 0.261 1 0.2578 0.2546 0.25 1 4  0.2483 0.2451 
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.21 77 0.2 1 48 

0.8 0.21 1 9  0.2090 0.2061 0.2033 0.2005 0. 1 977 0. 1 949 0. 1 922 0.1 894 0.1 867 

0.9 0.1 841 0.1 8 14  0.1 788 0 . 1 762 0.1 736 0. 1 71 1  0 . 1 685 0 . 1 660 0.1 635 0.1 61 1 

1 .0 0.1 587 0.1 562 0.1 539 0. 1 5 1 5  0.1 492 0. 1 469 0.1 446 0. 1 423 0.1 401 0.1 379 
1 . 1 0.1 357 0.1 335 0.1 3 1 4 0 . 1 292 0 . 1271  0 . 1 251 0 . 1 230 0.1 2 1 0  0.1 1 90 0.1 1 70 
1 .2 0.1 1 51 0.1 1 3 1 0. 1 1 1 2  0 . 1 093 0.1 075 0.1 056 0. 1 038 0 . 1 020 0.1 003 0.0985 

1 .3 0.0968 0.0951 0.0934 0.09 1 8  0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 
1 .4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 



1 .5 0.0668 0.0655 0.0643 0.0630 0.061 8 0.0606 0.0594 0.0582 0.0571 0.0559 
1 .6 0.0548 0.0537 0.0526 0.051 6 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 
1 .7 0.0446 0.0436 0.0427 0.041 8 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 
1 .8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.03 14  0.0307 0.0301 0.0294 
1 .9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

2.0 0.02275 0.02222 0.02 1 69 0.02 1 1 8  0.02068 0.0201 8 0.01 970 0.01 923 0.01 876 0.01 831 
2.1 0.01 786 0.01 743 0.01 700 0.01 659 0.01 61 8 0.01 578 0.01 539 0.01 500 0.01 463 0.01 426 

2.2 0.01 390 0.01 355 0.01 321 0.01 287 0.01 255 0.01 222 0.01 1 91 0.01 1 60 0.01 1 30 0.01 1 01 
2.3 0.01 072 0.01 044 0.01 0 1 7  0.00990 0.00964 0.00939 0.009 1 4  0.00889 0.00866 0.00842 
2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.0071 4  0.00695 0.00676 0.00657 0.00639 

2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480 
2 .6 0.00466 0.00453 0.00440 0.00427 0.0041 5 0.00402 0.00391 0.00379 0.00368 0.00357 
2.7 0.00347 0.00336 0.00326 0.0031 7 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264 
2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.0021 9 0.002 1 2  0.00205 0.00 1 99 0.001 93 
2.9 0.001 87 0.001 81 0.001 75 0.001 69 0.001 64 0.00 1 59 0.00 1 54 0.001 49 0.001 44 0.001 39 

3.0 0.001 35 0.00 13 1  0.00 1 26  0.001 22 0.001 1 8  0.001 1 4  0.001 1 1  0.00107 0.001 04 0.001 00 
3 . 1  0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071 
3 .2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050 
3 .3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035 
3 .4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024 

3 .5 0.00023 0.00022 0.00022 0.00021 0.00020 0.000 1 9  0.0001 9 0.0001 8 0.0001 7 0.0001 7 
3 .6 0.0001 6 0.000 1 5  0.0001 5 0.000 14  0.0001 4 0.000 1 3  0.0001 3 0.0001 2 0.0001 2 0.0001 1 
3 .7 0.0001 1 0.0001 0  0.000 1 0  0.0001 0 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008 
3 .8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005 
3 .9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003 
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Table A2 Percentage points of 
the standard normal distribution. 

Percentage points 

P-value One-sided Two-sided 

0.5 0.00 0.67 

0.4 0.25 0.84 

0.3 0.52 1 .04 

0.2 0.84 1 .28 

0.1 1 .28 1 .64 

0.05 1 .64 1 .96 

0.02 2.05 2.33 

0.01 2.33 2.58 
0.005 2 .58 2.81 

0.002 2.88 3.09 
0.001 3.09 3.29 

0.0001 3.72 3.89 
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Table A3 Percentage points of the t distribution. 

Adapted from Table 7 of White et al. (1 979) with permission of the authors and publishers. 

d.f. 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

1 1  

1 2  

1 3  

1 4  

1 5  

1 6  

1 7  

1 8  

1 9  

20 

21  

22 

23 

24 

25 

26 

27 

28 

29 

30 

40 

60 
1 20 

00 

0.25 

0.5 

1 .00 

0.82 

0.76 

0.74 

0.73 

0.72 

0.71 

0.71 

0.70 

0.70 

0.70 

0.70 

0.69 

0.69 

0.69 

0.69 

0.69 

0.69 

0.69 

0.69 

0.69 

0.69 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 

0.68 
0.68 

0.67 

0.1 

0.2 

3.08 

1 .89 

1 .64 

1 .53 

1 .48 

1 .44 

1 .42 

1 .40 

1 .38 

1 .3 7  

1 .36 

1 .36 

1 .35 

1 .34 

1 .34 

1 .34 

1 .33 

1 .33 

1 .33 

1 .32 

1 .32 

1 .32 

1 .32 

1 .32 

1 .32 

1 .32 

1 .3 1  

1 .3 1  

1 .3 1  

1 .3 1  

1 .30 

1 .30 

1 .29 

1 .28 

0.05 

0.1 

6 .31 

2.92 

2.35 

2 . 1 3  

2 .02 

1 .94 

1 .90 

1 .86 

1 .83 

1 .8 1  

1 .80 

1 .78 

1 .77 

1 .76 

1 . 75 

1 .75 

1 .74 

1 .73 

1 .73 

1 .72 

1 .72 

1 .72 

1 .7 1  

1 .7 1  

1 .7 1  

1 .7 1  

1 .70 

1 .70 

1 .70 

1 .70 

1 .68 

1 .67 

1 .66 

1 .65 

One-sided ?-value 

0.025 0.01 0.005 

Two-sided ?-va lue 

0.05 0.02 0.01 

1 2 .71 

4.30 

3 . 1 8  

2.78 

2.57 

2.45 

2.36 

2.31 

2.26 

2.23 

2.20 

2 . 1 8  

2 . 1 6  

2.1 4 

2 . 1 3  

2 . 1 2  

2 . 1 1 

2 . 1 0  

2.09 

2.09 

2.08 

2.07 

2.07 

2.06 

2.06 

2.06 

2.05 

2.05 

2.04 

2.04 

2.02 

2.00 

1 .98 

1 .96 

31 .82 

6.96 

4.54 

3.75 

3.36 

3 . 14  

3.00 

2.90 

2.82 

2.76 

2 .72 

2.68 

2.65 

2.62 

2 .60 

2.58 

2.57 

2.55 

2.54 

2.53 

2.52 

2 .51  

2 .50 

2.49 

2.48 

2.48 

2.47 

2.47 

2.46 

2.46 

2.42 

2.39 

2.36 

2.33 

63.66 

9.92 

5.84 

4.60 

4.03 

3.71 

3.50 

3.36 

3.25 

3 . 1 7 

3 . 1 1 

3.06 

3.01 

2.98 

2.95 

2.92 

2.90 

2.88 

2.86 

2.84 

2.83 

2.82 

2.81 

2.80 

2 .79 

2 .78 

2.77 

2.76 

2 .76 

2.75 

2 .70 

2.66 

2.62 

2 .58 

0.0025 0.001 0.0005 

0.005 0.002 0.001 

1 27.32 3 1 8.31 636.62 

1 4.09 

7.45 

5.60 

4.77 

4.32 

4.03 

3.83 

3.69 

3.58 

3.50 

3.43 

3.37 

3.33 

3.29 

3.25 

3.22 

3.20 

3 . 1 7 

3 . 1 5 

3 . 14  

3 . 1 2 

3 . 1 0 

3.09 

3.08 

3.07 

3.06 

3.05 

3.04 

3.03 

2.97 

2.92 

2.86 

2.81 

22.33 

1 0.21  

7 . 1 7  

5.89 

5.21 

4.78 

4.50 

4.30 

4. 1 4 

4.02 

3.93 

3.85 

3.79 

3.73 

3 .69 

3.65 

3 .61  

3 .58 

3.55 

3.53 

3 .50 

3.48 

3.47 

3.45 

3.44 

3.42 

3 .41 

3.40 

3.38 

3 .31  

3 .23 

3 . 1 6 

3.09 

3 1 .60 

1 2 .92 

8.61 

6.87 

5.96 

5.41 

5.04 

4.78 

4.59 

4.44 

4.32 

4.22 

4. 1 4  

4.07 

4.02 

3.96 

3.92 

3.88 

3.85 

3.82 

3.79 

3.77 

3.74 

3.72 

3 .71  

3.69 

3 .67 

3.66 

3 .65 

3.55 

3.46 

3 .37 

3.29 
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Table A4 Two-sided P-values for the t distribution, according to the value of 
the test statistic. 

The final column shows P-values for infinite degrees of freedom, equivalent to P-values from the normal 

distribution. 

Value of test 

statistic (t) 

1 .5 

1 .6 

1 .7 

1 .8 

1 .9 

2.0 

2 . 1  

2 .2 

2.3 

2.4 

2.5 

2.6 

2 .7  

2.8 

2.9 

3 .0  

3 . 1  

3 .2 

3.3 

3.4 

3.5 

3.6 

3 .7  

3.8 

3.9 

4.0 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

5.0 

5 

0.1 94 

0.1 70 

0.1 50 

0.1 32 

0.1 1 6  

0.1 02 

0.090 

0.079 

0.070 

0.062 

0.054 

0.048 

0.043 

0.038 

0.034 

0.030 

0.027 

0.024 

0.021 

0.01 9 

0.01 7 

0.01 6 

0.01 4 

0.01 3 

0.01 1 

0.01 0 

0.009 

0.008 

0.008 

0.007 

0.006 

0.006 

0.005 

0.005 

0.004 

0.004 

6 

0 . 184 

0.1 61 

0 . 140 

0 . 1 22 

0.1 06 

0.092 

0.080 

0.070 

0.061 

0.053 

0.047 

0.041 

0.036 

0.031 

0.027 

0.024 

0.021 

0.01 9 

0.01 6 

0.01 4 

0.01 3 

0.01 1 

0.01 0 

0.009 

0.008 

0.007 

0.006 

0.006 

0.005 

0.005 

0.004 

0.004 

0.003 

0.003 

0.003 

0.002 

7 

0.1 77 

0.1 54 

0.1 33 

0.1 1 5  

0.099 

0.086 

0.074 

0.064 

0.055 

0.047 

0.041 

0.035 

0.031 

0.027 

0.023 

0.020 

0.01 7 

0.01 5 

0.01 3 

0.01 1 

0.01 0 

0.009 

0.008 

0.007 

0.006 

0.005 

0.005 

0.004 

0.004 

0.003 

0.003 

0.002 

0.002 

0.002 

0.002 

0.002 

Degrees of freedom for t 

8 

0 . 1 72 

0 . 148 

0 . 128 

0.1 1 0  

0.094 

0.081 

0.069 

0.059 

0.050 

0.043 

0.037 

0.032 

0.027 

0.023 

0.020 

0.01 7 

0.01 5 

0.01 3 

0.01 1 

0.009 

0.008 

0.007 

0.006 

0.005 

0.005 

0.004 

0.003 

0.003 

0.003 

0.002 

0.002 

0.002 

0.002 
0.001 

0.001 

0.001 

9 

0.1 68 

0 . 144 

0 . 1 23 

0 . 1 05 

0.090 

0.077 

0.065 

0.055 

0.047 

0.040 

0.034 

0.029 

0.024 

0.02 1 

0.01 8 

0.01 5 

0.01 3 

0.01 1 

0.009 

0.008 

0.007 

0.006 

0.005 

0.004 

0.004 

0.003 

0.003 

0.002 

0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

0.001 

0.001 

1 0  1 2  

0 . 1 65 0 . 1 59 

0 . 1 41 0.1 36 

0 . 1 20 0 . 1 1 5  

0. 1 02 0.097 

0.087 0.082 

0.073 0.069 

0.062 0.058 

0.052 0.048 

0.044 0.040 

0.037 0.034 

0.031 0.028 

0.026 0.023 

0.022 0.01 9 

0.01 9 0.0 1 6  

0.01 6 0.01 3 

0.01 3 0.01 1 

0.01 1 0.009 

0.009 0.008 

0.008 0.006 

0.007 0.005 

0.006 0.004 

0.005 0.004 

0.004. 0.003 

0.003 0.003 

0.003 0.002 

0.003 0.002 

0.002 0.001 

0.002 0.001 

0.002 0.001 

0.001 0.001 

0.001 0.001 

0.001 0.001 

0.001 0.001 
0.001 <0.001 

0.001 <0.001 

0.001 <0.001 

1 4  

0.1 56 

0 . 1 32 

0 . 1 1 1  

0.093 

0.078 

0.065 

0.054 

0.045 

0.037 

0.031 

0.025 

0.021 

0.0 1 7  

0.01 4 

0.01 2 

0.0 1 0  

0.008 

0.006 

0.005 

0.004 

0.004 

0.003 

0.002 

0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 
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Degrees of freedom for t 
�����������������������������- oo (same 

1 6  

0 . 1 53 

0 . 1 29 

0.1 08 

0.091 

0.076 

0.063 

0.052 

0.043 

0.035 

0.029 

0.024 

0.01 9 

0.01 6 

0.01 3 

0.01 0 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

0.001 

<0.001 

<0.001 
<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

1 8  

0 . 1 5 1  

0 . 1 27 

0.1 06 

0.089 

0.074 

0.061 

0.050 

0.041 

0.034 

0.027 

0.022 

0.01 8 

0.01 5 

0.01 2 

0.0 1 0  

0.008 

0.006 

0.005 

0.004 

0.003 

0.003 

0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 
<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

20 

0 . 1 49 

0.1 25 

0 . 1 05 

0 .087 

0.072 

0.059 

0.049 

0.040 

0.032 

0.026 

0.021 

0.0 1 7 

0.0 1 4  

0.0 1 1 

0.009 

0.007 

0.006 

0.004 

0.004 

0.003 

0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 

<0.001 
<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

25 

0.1 46 

0 . 1 22 

0.1 02 

0.084 

0.069 

0.056 

0.046 

0.037 

0.030 

0.024 

0.01 9 

0.01 5 

0.01 2 

0.01 0 

0.008 

0.006 

0.005 

0.004 

0.003 

0.002 

0.002 
0.001 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

30 

0 . 1 44 

0 . 1 20 

0.099 

0.082 

0.067 

0.055 

0 .044 

0.036 

0.029 

0.023 

0.01 8 

0.01 4 

0.01 1 

0.009 

0.007 

0.005 

0.004 

0.003 

0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 
<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

40 

0 . 141  

0.1 1 7  

0.097 

0.079 

0.065 

0.052 

0.042 

0.034 

0.027 

0.02 1 

0.0 1 7  

0.01 3 

0.01 0 

0.008 

0.006 

0.005 

0.004 

0.003 

0.002 

0.002 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

50 

0. 1 40 

0.1 1 6  

0.095 

0.078 

0.063 

0.051 

0.041 

0.032 

0.026 

0.020 

0.01 6 

0.01 2 

0.009 

0.007 

0.006 

0.004 

0.003 

0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 
<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

60 

0 . 1 39  

0 . 1 1 5  

0.094 

0.077 

0.062 

0.050 

0.040 

0.032 

0.025 

0.020 

0.01 5 

0.01 2 

0.009 

0.007 

0.005 

0.004 

0.003 

0.002 

0.002 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 
<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

as normal) 

0.1 34 

0 . 1 1 0  

0.089 

0.072 

0.057 

0.046 

0.036 

0.028 

0.021 

0.01 6 

0.0 1 2  

0.009 

0.007 

0.005 

0.004 

0.003 

0.002 

0.001 

0.001 

0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 
<0.001 

<0.001 

<0.001 

<0.001 

<0.001 
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Table AS Percentage points of the x2 distribution. 

Adapted from Table 8 of  White et al. (1 979) with permission of  the authors and publishers. 

d.f. = 1 .  In the comparison of two proportions (2 x 2 x2 or Mantel-Haenszel x2 test) or in the 

assessment of a trend, the percentage points give a two-sided test. A one-sided test may be obtained 

by halving the P-values. (Concepts of one- and two-sidedness do not apply to larger degrees of 

freedom, as these relate to tests of multiple comparisons.) 

d.f. 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

1 1  

1 2  

1 3  

1 4  

1 5  

1 6  

1 7  

1 8  

1 9  

20 

21  

22 

23 

24 

25 

26 

27 
28 

29 

30 

40 

50 

60 

70 

80 

90 

1 00 

0.5 

0.45 

1 .39 

2.37 

3.36 

4.35 

5.35 

6.35 

7.34 

8.34 

9.34 

1 0.34 

1 1 .34 

1 2 .34 

1 3 .34 

1 4.34 

1 5 .34 

1 6.34 

1 7.34 

1 8.34 

1 9.34 

20.34 

2 1 .34 

22.34 

23.34 

24.34 

25.34 

26.34 
27.34 

28.34 

29.34 

39.34 

49.33 

59.33 

69.33 

79.33 

89.33 

99.33 

0.25 

1 .32 

2.77 

4.1 1 

5.39 

6.63 

7.84 

9.04 

1 0.22 

1 1 .39 

1 2 .55 

1 3 .70 

1 4.85 

1 5 .98 

1 7 . 1 2  

1 8.25 

1 9.37 

20.49 

21 .60 

22.72 

23.83 

24.93 

26.04 

27 . 14  

28.24 

29.34 

30.43 

3 1 .53 
32.62 

33.71 

34.80 

45.62 

56.33 

66.98 

77.58 

88. 1 3  

98.65 

1 09 . 14  

0.1 

2.71 

4.61 

6.25 

7.78 

9.24 

1 0.64 

1 2 .02 

1 3.36 

1 4.68 

1 5 .99 

1 7.28 

1 8.55 

1 9.81 

21 .06 

22.31 

23.54 

24.77 

25.99 

27.20 

28.41 

29.62 

30.81 

32.01 

33.20 

34.38 

35 .56 

36.74 

37.92 

39.09 

40.26 

51 .81 

63 . 1 7  

74.40 

85.53 

96.58 

1 07.57 

1 1 8.50 

P-value 

0.05 

3.84 

5.99 

7.81 

9.49 

1 1 .07 

1 2 .59 

1 4.07 

1 5.51  

1 6.92 

1 8.31 

1 9.68 

21 .03 

22.36 

23.68 

25.00 

26.30 

27.59 

28.87 

30. 1 4  

31 .41 

32.67 

33.92 

35. 1 7  

36.42 

37.65 

38.89 

40.1 1 

41 .34 

42.56 

43.77 

55.76 

67.50 

79.08 

90.53 

1 01 .88 

1 1 3 . 1 5  

1 24.34 

0.025 

5.02 

7.38 

9.35 

1 1 . 1 4  

1 2 .83 

1 4.45 

1 6.01 

1 7.53 

1 9.02 

20.48 

2 1 .92 

23.34 

24.74 

26. 1 2 

27.49 

28.85 

30. 1 9  

3 1 .53 

32.85 

34. 1 7 

35.48 

36.78 

38.08 

39.36 

40.65 

41 .92 

43 . 1 9  

44.46 

45.72 

46.98 

59.34 

71 .42 

83.30 

95.02 

1 06.63 

1 1 8. 1 4  

1 29.56 

0.01 

6.63 

9.21 

1 1 .34 

1 3 .28 

1 5.09 

1 6.81 

1 8.48 

20.09 

21 .67 

23.21 

24.73 

26.22 

27 .69 

29. 1 4  

30.58 

32.00 

33.41 

34.81 

36. 1 9  

37.57 

38.93 

40.29 

41 .64 

42.98 

44.31 

45.64 

46.96 

48.28 

49.59 

50.89 

63.69 

76. 1 5  

88.38 

1 00.43 

1 1 2.33 

1 24. 1 2  
1 35.81 

0.005 

7.88 

1 0.60 

1 2 .84 

1 4.86 

1 6.75 

1 8 .55 

20.28 

21 .96 

23.59 

25. 1 9  

26.76 

28.30 

29.82 

3 1 .32 

32.80 

34.27 

35 .72 

37 . 1 6 

38.58 

40.00 

41 .40 

42.80 

44. 1 8  

45.56 

46.93 

48.29 

49.64 

50.99 

52.34 

53.67 

66.77 

79.49 

91 .95 

1 04.22 

1 1 6.32 

1 28.30 
1 40. 1 7 

0.001 

1 0.83 

1 3 .82 

1 6.27 

1 8.47 

20.52 

22.46 

24.32 

26. 1 3 

27.88 

29.59 

31 .26 

32.91 

34.53 

36. 1 2  

37.70 

39.25 

40.79 

42 .31  

43.82 

45.32 

46.80 

48.27 

49.73 

5 1 . 1 8  

52.62 

54.05 

55.48 

56.89 

58.30 

59.70 

73.40 

86.66 

99.61 

1 1 2.32 

1 24.84 

1 37 .21  

1 49.45 
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Table AG Probits. 
Adapted from Table 4 of Pearson & Hartley (1 966) with permission of the Biometrika Trustees. 

Probit =
value of standard normal 

.
distribution I + 5, optional: not included I corresponding to cumulative percentage in this table 

% 
0 

4 

6 
7 
8 
9 

1 0  
1 1  
1 2  
1 3  
1 4  

1 5  
1 6  
1 7  
1 8  
1 9  

20 
21  
22 
23 
24 

25 
26 
27 
28 
29 

30 
3 1  
3 2  
3 3  
34 

35 
36 
37  
38  
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

0.0 

-oo 
-2.33 
-2.05 
-1 .88 
-1 .75 

-1 .64 
-1 .55 
-1 .48 
- 1 .41 
- 1 .34 

-1 .28 
-1 .23 
- 1 . 1 8  
- 1 . 1 3  
- 1 .08 

- 1 .04 
-0.99 
-0.95 
-0.92 
-0.88 

-0.84 
-0.81 
-0.77 
-0.74 
-0.71 

-0.67 
-0.64 
-0.61 
-0.58 
-0.55 

-0.52 
-0.50 
-0.47 
-0.44 
-0.41 

-0.39 
-0.36 
-0.33 
-0.31 
-0.28 

-0.25 
-0.23 
-0.20 
-0. 1 8  
-0. 1 5  

-0. 1 3  
-0. 1 0  
-0.08 
-0.05 
-0.03 

0.1 0.2 

-3.09 -2.88 
-2.29 -2.26 
-2.03 -2.01 
- 1 .87 -1 .85 
-1 .74 -1 .73 

-1 .64 - 1 .63 
-1 .55 -1 .54 
-1 .47 -1 .46 
-1 .40 - 1 .39 
-1 .33 -1 .33 

- 1 .28 -1 .27 
-1 .22 -1 .22 
- 1 . 1 7  - 1 . 1 7  
- 1 . 1 2  - 1 . 1 2  
-1 .08 -1 .07 

-1 .03 -1 .03 
-0.99 -0.99 
-0.95 -0.95 
-0.91 -0.91 
-0.87 -0.87 

-0.84 -0.83 
-0.80 -0.80 
-0.77 -0.77 
-0.74 -0.73 
-0.70 -0.70 

-0.67 -0.67 
-0.64 -0.64 
-0.61 -0.61 
-0.58 -0.58 
-0.55 -0.55 

-0.52 -0.52 
-0.49 -0.49 
-0.46 -0.46 
-0.44 -0.43 
-0.41 -0.41 

-0.38 -0.38 
-0.36 -0.35 
-0.33 -0.33 
-0.30 -0.30 
-0.28 -0.27 

-0.25 -0.25 
-0.23 -0.22 
-0.20 -0.20 
-0. 1 7  -0. 1 7  
-0. 1 5  -0. 1 5  

-0. 1 2  -0. 1 2  
-0. 1 0  -0. 1 0  
-0.07 -0.07 
-0.05 -0.05 
-0.02 -0.02 

Decimal place of % 
0.3 0.4 0.5 0.6 

-275 -2.65 -2.58 -2.51 
-2.23 -2.20 -2. 1 7  -2 . 14  
-2.00 -1 .98 -1 .96 - 1 .94 
-1 .84 -1 .83 - 1 .81 -1 .80 
-1 .72 -1 .71 -1 .70 - 1 .68 

-1 .62 -1 .61 -1 .60 -1 .59 
-1 .53 -1 .52 -1 .51 -1 .51 
-1 .45 - 1 .45 -1 .44 -1 .43 
-1 .39 - 1 .38 -1 .37 -1 .37 
-1 .32 - 1 .32 -1 .31 -1 .30 

-1 .26 -1 .26 - 1 .25 -1 .25 
-1 .21 - 1 .21 -1 .20 -1 .20 
- 1 .1 6  - 1 . 1 6  - 1 . 1 5  - 1 . 1 5  
- 1 . 1 1  - 1 . 1 1  - 1 .1 0  - 1 . 1 0  
-1 .07 - 1 .06 -1 .06 -1 .05 

-1 .02 - 1 .02 -1 .02 -1 .01 
-0.98 -0.98 -0.97 -0.97 
-0.94 -0.94 -0.93 -0.93 
-0.90 -0.90 -0.90 -0.89 
-0.87 -0.86 -0.86 -0.86 

-0.83 -0.83 -0.82 -0.82 
-0.80 -0.79 -0.79 -0.79 
-0.76 -0.76 -0.76 -0.75 
-0.73 -0.73 -0.72 -0.72 
-0.70 -0.69 -0.69 -0.69 

-0.67 -0.66 -0.66 -0.66 
-0.63 -0.63 -0.63 -0.63 
-0.60 -0.60 -0.60 -0.59 
-0.57 -0.57 -0.57 -0.57 
-0.54 -0.54 -0.54 -0.54 

-0.52 -0.51 -0.51 -0.51 
-0.49 -0.48 -0.48 -0.48 
-0.46 -0.46 -0.45 -0.45 
-0.43 -0.43 -0.43 -0.42 
-0.40 -0.40 -0.40 -0.40 

-0.38 -0.37 -0.37 -0.37 
-0.35 -0.35 -0.35 -0.34 
-0.32 -0.32 -0.32 -0.32 
-0.30 -0.30 -0.29 -0.29 
-0.27 -0.27 -0.27 -0.26 

-0.25 -0.24 -0.24 -0.24 
-0.22 -0.22 -0.21 -0.21 
-0. 1 9  -0. 1 9  -0. 19  -0. 1 9  
-0. 1 7  -0. 1 7  -0. 16  -0. 1 6  
-0. 14  -0.14 -0. 14  -0. 1 4  

-0.1 2 -0. 1 2  -0.1 1 -0. 1 1  
-0.09 -0.09 -0.09 -0.09 
-0.07 -0.07 -0.06 -0.06 
-0.04 -0.04 -0.04 -0.04 
-0.02 -0.02 -0.01 -0.01 

0.7 0.8 0.9 

-2.46 -2.41 -2.37 
-2 . 12  -2.1 0 -2.07 
-1 .93 -1 .91 -1 .90 
-1 .79 - 1 .77 -1 .76 
-1 .67 - 1 .66 -1 .65 

-1 .58 -1 .57 -1 .56 
-1 .50 -1 .49 - 1 .48 
- 1 .43 -1 .42 - 1 .41 
- 1 .36 -1 .35 - 1 .35  
-1 .30 -1 .29 - 1 .29 

-1 .24 -1 .24 - 1 .23 
- 1 . 1 9  - 1 . 1 9  - 1 . 1 8  
- 1 .1 4  - 1 . 1 4  - 1 . 1 3  
-1 .09 -1 .09 - 1 .08 
-1 .05 -1 .05 - 1 .04 

-1 .01 -1 .00 -1 .00 
-0.97 -0.96 -0.96 
-0.93 -0.92 -0.92 
-0.89 -0.89 -0.88 
-0.85 -0.85 -0.85 

-0.82 -0.81 -0.81 
-0.78 -0.78 -0.78 
-0.75 -0.75 -0.74 
-0.72 -0.71 -0.71 
-0.68 -0.68 -0.68 

-0.65 -0.65 -0.65 
-0.62 -0.62 -0.62 
-0.59 -0.59 -0.59 
-0.56 -0.56 -0.56 
-0.53 -0.53 -0.53 

-0.50 -0.50 -0.50 
-0.48 -0.47 -0.47 
-0.45 -0.45 -0.44 
-0.42 -0.42 -0.42 
-0.39 -0.39 -0.39 

-0.37 -0.36 -0.36 
-0.34 -0.34 -0.33 
-0.31 -0.31 -0.31 
-0.29 -0.28 -0.28 
-0.26 -0.26 -0.26 

-0.24 -0.23 -0.23 
-0.21 -0.21 -0.20 
-0. 18 -0. 1 8  -0. 1 8  
-0. 1 6  -0. 1 6  -0. 1 5  
-0. 1 3  -0. 1 3  -0. 1 3  

-0. 1 1  -0.1 1 -0. 1 0  
-0.08 -0.08 -0.08 
-0.06 -0.06 -0.05 
-0.03 -0.03 -0.03 
-0.01 -0.01 0.00 

(continued) 



478 Appendix: Statistical tables 

Table AG Probits (continued) 

% 
50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

65 
66 
67 
68 
69 

70 
71 
72 
73 
74 

75 
76 
77 
78 
79 

80 
81 
82 
83 
84 

85 
86 
87 
88 
89 

90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

0.0 

0.00 
0.03 
0.05 
0.08 
0.1 0 

0.1 3 
0.1 5 
0.1 8 
0.20 
0.23 

0.25 
0.28 
0.31 
0.33 
0.36 

0.39 
0.41 
0.44 
0.47 
0.50 

0.52 
0.55 
0.58 
0.61 
0.64 

0.67 
0.71 
0.74 
0.77 
0.81 

0.84 
0.88 
0.92 
0.95 
0.99 

1 .04 
1 .08 
1 . 1 3  
1 . 1 8  
1 .23 

1 .28 
1 .34 
1 .41 
1 .48 
1 .55 

1 .64 
1 .75 
1 .88 
2.05 
2.33 

0 . 1  

0.00 
0.03 
0.05 
0.08 
0.10 

0.13 
0.1 5 
0 . 18  
0.20 
0.23 

0.26 
0.28 
0.31 
0.33 
0.36 

0.39 
0.42 
0.44 
0.47 
0.50 

0.53 
0.56 
0.59 
0.62 
0.65 

0.68 
0.71 
0.74 
0.78 
0.81 

0.85 
0.88 
0.92 
0.96 
1 .00 

1 .04 
1 .08 
1 .1 3  
1 . 1 8  
1 .23 

1 .29 
1 .35 
1 .41 
1 .48 
1 .56 

1 .65 
1 .76 
1 .90 
2.07 
2.37 

0.2 

0.01 
0.03 
0.06 
0.08 
0. 1 1  

0.1 3 
0.1 6 
0.1 8 
0.21 
0.23 

0.26 
0.28 
0.31 
0.34 
0.36 

0.39 
0.42 
0.45 
0.47 
0.50 

0.53 
0.56 
0.59 
0.62 
0.65 

0.68 
0.71 
0.75 
0.78 
0.81 

0.85 
0.89 
0.92 
0.96 
1 .00 

1 .05 
1 .09 
1 . 1 4  
1 . 1 9  
1 .24 

1 .29 
1 . 35 
1 .42 
1 .49 
1 .57 

1 .66 
1 .77 
1 .91  
2 . 10  
2.41 

0.3 

0.01 
0.03 
0.06 
0.08 
0.1 1 

0.1 3 
0.1 6 
0 . 18 
0.21 
0.24 

0.26 
0.29 
0.31 
0.34 
0.37 

0.39 
0.42 
0.45 
0.48 
0.50 

0.53 
0.56 
0.59 
0.62 
0.65 

0.68 
0.72 
0.75 
0.78 
0.82 

0.85 
0.89 
0.93 
0.97 
1 .01 

1 .05 
1 .09 
1 . 1 4  
1 .1 9  
1 .24 

1 .30 
1 .36 
1 .43 
1 .50 
1 .58 

1 .67 
1 .79 
1 .93 
2.1 2 
2.46 

Decimal place of % 
0.4 

0,01 
0.04 
0.06 
0.09 
0. 1 1  

0.14 
0.16 
0.19 
0.21 
0.24 

0.26 
0.29 
0.32 
0.34 
0.37 

0.40 
0.42 
0.45 
0.48 
0.51 

0.54 
0.57 
0.59 
0.63 
0.66 

0.69 
0.72 
0.75 
0.79 
0.82 

0.86 
0.89 
0.93 
0.97 
1 .01 

1 .05 
1 .1 0  
1 . 1 5  
1 .20 
1 .25 

1 .30 
1 .37 
1 .43 
1 .51 
1 .59 

1 .68 
1 .80 
1 .94 
2.14 
2.51 

0.5 

0,01 
0.04 
0.06 
0.09 
0 . 1 1  

0.14 
0.16 
0.19 
0.21 
0.24 

0.27 
0.29 
0.32 
0.35 
0.37 

0.40 
0.43 
0.45 
0.48 
0.51 

0.54 
0.57 
0.60 
0.63 
0.66 

0.69 
0.72 
0.76 
0.79 
0.82 

0.86 
0.90 
0.93 
0.97 
1 .02 

1 .06 
1 .1 0  
1 .1 5  
1 .20 
1 .25 

1 .31  
1 .37 
1 .44 
1 .51 
1 .60 

1 .70 
1 .81 
1 .96 
2.1 7 
2.58 

0.6 

0.02 
0.04 
0.07 
0.09 
0 . 12  

0 . 14 
0.1 7 
0 . 19  
0.22 
0.24 

0.27 
0.30 
0.32 
0.35 
0.37 

0.40 
0.43 
0.46 
0.48 
0.51 

0.54 
0.57 
0.60 
0.63 
0.66 

0.69 
0.73 
0.76 
0.79 
0.83 

0.86 
0.90 
0.94 
0.98 
1 .02 

1 .06 
1 . 1 1  
1 . 1 6  
1 .21  
1 .26 

1 .32 
1 .38 
1 .45 
1 .52 
1 .61 

1 .71  
1 .83 
1 .98 
2.20 
2.65 

0.7 

0.02 
0.04 
0.07 
0.09 
0. 12 

0 . 14  
0.1 7 
0 . 19  
0.22 
0.25 

0.27 
0.30 
0.32 
0.35 
0.38 

0.40 
0.43 
0.46 
0.49 
0.52 

0.54 
0.57 
0.60 
0.63 
0.67 

0.70 
0.73 
0.76 
0.80 
0.83 

0.87 
0.90 
0.94 
0.98 
1 .02 

1 .07 
1 .1 1  
1 .1 6  
1 .2 1  
1 .26 

1 .32 
1 .39 
1 .45 
1 .53 
1 .62 

1 .72 
1 .84 
2.00 
2.23 
2.75 

0.8 

0.02 
0.05 
0.07 
0.1 0 
0 . 12 

0.1 5 
0 . 1 7  
0.20 
0.22 
0.25 

0.27 
0.30 
0.33 
0.35 
0.38 

0.41 
0.43 
0.46 
0.49 
0.52 

0.55 
0.58 
0.61 
0.64 
0.67 

0.70 
0.73 
0.77 
0.80 
0.83 

0.87 
0.91 
0.95 
0.99 
1 .03 

1 .07 
1 .1 2  
1 .1 7  
1 .22 
1 .27 

1 .33 
1 .39 
1 .46 
1 .54 
1 .63 

1 .73 
1 .85 
2.01 
2.26 
2.88 

0.9 

0.02 
0.05 
0.07 
0.1 0 
0 . 12  

0.1 5 
0 . 1 7  
0.20 
0.23 
0.25 

0.28 
0.30 
0.33 
0.36 
0.38 

0.41 
0.44 
0.46 
0.49 
0.52 

0.55 
0.58 
0.61 
0.64 
0.67 

0.70 
0.74 
0.77 
0.80 
0.84 

0.87 
0.91 
0.95 
0.99 
1 .03 

1 .08 
1 .1 2  
1 .1 7  
1 .22 
1 .28 

1 .33 
1 .40 
1 .47 
1 .55 
1 .64 

1 .74 
1 .87 
2.03 
2.29 
3.09 
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Table A7 Critical values for the Wilcoxon matched pairs signed rank test. 

Reproduced from Table 21  of White et al. (1 979) with permission of the authors and publishers. 

N = number of non-zero differences; T = smaller of T+ and T_; Significant if T < critical value. 

One-sided P-value One-sided P-value 

0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005 

Two-sided P-value Two-sided P-va lue 

N 0 . 1  0.05 0.02 0.01 N 0.1  0.05 0.02 0.01 

5 30 1 52 1 37 1 20 1 09 

6 2 1 31  1 63 1 48 1 30 1 1 8  

7 4 2 0 32 1 75 1 59 14 1  1 28 

8 6 4 2 0 33 1 88 1 71 1 51 1 38 

9 8 6 3 34 201 1 83 1 62 1 49 

1 0  1 1  8 5 3 35 2 1 4  1 95 1 74 1 60 

1 1  1 4  1 1  7 5 36 228 208 1 86 1 71 

1 2  1 7  1 4  1 0  7 37 242 222 1 98 1 83 

1 3  21  1 7  1 3  1 0  38 256 235 2 1 1 1 95 

1 4  2 6  2 1  1 6  1 3  3 9  271 250 224 208 

1 5  30 25 20 1 6  40 287 264 238 221 

1 6  36 30 24 1 9  41 303 279 252 234 

1 7  41 35 28 23 42 3 1 9  295 267 248 

1 8  47 40 33 28 43 336 3 1 1 281 262 

1 9  54 46 38 32 44 353 327 297 277 

20 60 52 43 37 45 371 344 3 1 3  292 

2 1  68 59 49 43 46 389 361 329 307 
22 75 66 56 49 47 408 397 345 323 

23 83 73 62 55 48 427 397 362 339 
24 92 81 69 61 49 446 41 5 380 356 

25 1 01 90 77 68 50 466 434 398 373 

26 1 1 0  98 85 76 

27 1 20 1 07 93 84 

28 1 30 1 1 7  1 02 92 

29 1 41 1 27 1 1 1  1 00 
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Table AS Critical ranges for the Wilcoxon rank sum test. 

Reproduced from Table A7 of Cotton (1 974) with permission of the author and publishers. 

n1 , n2 = sample sizes of two groups; T = sum of ranks in group with smaller sample size; 

significant if T on boundaries or outside critical range. 

One-sided P-value One-sided P-value 
0.025 0.005 0.0005 0.025 0.005 0.0005 

Two-sided P-value Two-sided P-value 

n1, n2 0.05 0.01 0.001 n1 , n2 0.05 0.01 0.001 

2, 8 3, 1 9  4, 1 3  1 8, 54 1 4, 58 1 0, 62 
2, 9 3, 21  4 ,  14 1 9, 57 1 4, 62 1 0, 66 
2, 1 0  3 ,  23 4, 1 5  20, 60 1 5, 65 1 0, 70 
2, 1 1  4, 24 4, 1 6  2 1 ,  63 1 5, 69 1 1 ,  73 
2, 1 2  4, 26 4, 1 7  2 1 ,  67 1 6, 72 1 1 ,  77 
2, 13 4, 28 4, 1 8  22, 70 1 6, 76 1 1 ,  81 
2, 1 4  4, 30 4, 1 9  23, 73 1 7, 79 1 2, 84 
2, 1 5  4, 32 4, 20 24, 76 1 8, 82 1 2, 88 
2 ,  1 6  4, 34 4, 21  25, 79 1 8, 86 1 2, 92 
2, 1 7  5, 35 4, 22 26, 82 1 9, 89 1 3, 95 
2, 1 8  5, 37 4, 23 27, 85 1 9, 93 1 3, 99 
2, 1 9  5 ,  39 3, 41 4, 24 28, 88 20, 96 1 3, 1 03 
2, 20 5, 41 3, 43 4, 25 28, 92 20, 1 00 1 4, 1 06 
2, 2 1  6, 42 3, 45 
2, 22 6, 44 3, 47 5, 1 7, 38 1 5, 40 
2, 23 6, 46 3, 49 5, 6 1 8, 42 1 6, 44 
2, 24 6, 48 3, 51 5, 20, 45 1 7, 48 
2, 25 6, 50 3, 53 5, 8 21 , 49 1 7, 53 

3, 6, 21 5, 9 22, 53 1 8, 57 1 5, 60 

3, 6 7, 23 5, 1 0  23, 57 1 9, 61  1 5, 65 

3, 7 7, 26 5, 1 1  24, 61 20, 65 1 6, 69 

3, 8 8, 28 5, 1 2  26, 64 2 1 ,  69 1 6, 74 

3, 9 8, 3 1  6 ,  33  5 ,  13  27, 68 22, 73 1 7, 78 

3, 1 0  9 ,  33 6, 36 5, 1 4  28, 72 22, 78 1 7, 83 

3, 1 1  9, 36 6, 39 5, 1 5  29, 76 23, 82 1 8, 87 

3, 1 2  1 0, 38 7, 41 5, 1 6  3 1 ,  79 24, 86 1 8, 92 

3, 1 3  1 0, 41 7, 44 5, 1 7  32, 83 25, 90 1 9, 96 

3, 1 4  1 1 ,  43 7, 47 5, 1 8  33, 87 26, 94 1 9, 1 01 

3, 1 5  1 1 ,  46 8, 49 5, 1 9  34, 91 27, 98 20, 1 05 

3, 1 6  1 2, 48 8, 52 5, 20 35, 95 28, 1 02 20, 1 1 0  

3 ,  1 7  1 2, 51 8, 55 5, 21 37, 98 29, 1 06 2 1 ,  1 1 4 

3, 1 8  1 3, 53 8, 58 5, 22 38, 1 02 29, 1 1 1  2 1 ,  1 1 9  

3, 1 9  1 3, 56 9, 60 5, 23 39, 1 06 30, 1 1 5  22, 123  

3, 20 1 4, 58 9 ,  63 5, 24 40, 1 1 0  3 1 ,  1 1 9  23, 1 2 7  

3 ,  21  1 4, 61 9, 66 6, 69 5, 25 42, 1 1 3  32, 1 23 23, 132  

3, 22  1 5, 63 1 0, 68 6, 72 
3, 23 1 5, 66 1 0, 71  6, 75 6, 6 26, 52 23, 55 

3, 24 1 6, 68 1 0, 74 6, 78 6, 27, 57 24, 60 

3, 25 1 9, 71 1 1 ,  76 6, 81 6, 29, 61 25, 65 2 1 ,  69 

6, 3 1 ,  65  26, 70 22, 74 

4, 4 1 0, 26 6, 1 0  32, 70 27, 75 23, 79 

4, 5 1 1 ,  29 6, 1 1  34, 74 28, 80 23, 85 

4, 6 1 2, 32 1 0, 34 6, 1 2  35, 79 30, 84 24, 90 

4, 7 1 3, 35 1 0, 38 6, 1 3  37, 83 3 1 ,  89 25, 95 

4, 8 1 4, 38 1 1 ,  41 6, 1 4  38, 88 32, 94 26, 1 00 

4, 9 1 5, 41 1 1 ,  45 6, 1 5  40, 92 33, 99 26, 1 06 

4, 1 0  1 5, 45 12, 48 6, 16 42, 96 34, 1 04 27, 1 1 1  

4, 1 1  1 6, 48 1 2, 52 6, 1 7  43, 1 01 36, 1 08 28, 1 1 6  

4, 1 2  1 7, 51 1 3, 55 6, 1 8  45, 1 05 37, 1 1 3  29, 1 2 1  



Table AS 

n1 , n2 

6, 1 9  
6, 20 
6, 21 
6, 22 
6, 23 
6, 24 

7, 
7, 8 
7, 9 
7, 1 0  
7 ,  1 1  
7, 1 2  
7, 1 3  
7 ,  1 4  
7 ,  1 5  
7, 1 6  
7, 1 7  
7 ,  1 8  
7, 1 9  
7, 20 
7, 21  
7, 22 
7, 23 

8, 8 
8, 9 
8, 1 0  
8 ,  1 1  
8 ,  1 2  
8 ,  1 3  
8 ,  1 4  
8 ,  1 5  
8, 1 6  
8, 1 7  
8 ,  1 8  
8, 1 9  
8 ,  20 
8, 21 
8, 22 

9, 9 
9, 1 0  
9, 1 1  
9, 1 2  
9, 1 3  
9, 1 4  
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Critical ranges for the Wilcoxon rank sum test (continued) 

One-sided P-value One-sided P-value 

0.025 0.005 0.0005 0.025 0.005 0.0005 

Two-sided P-value Two-sided P-value 

0.05 0.01 0.001 n1 , n2 0.05 0.01 0.001 

46, 1 1 0  38, 1 1 8  29, 1 27 9, 1 5  79, 1 46 70, 1 55 60, 1 65 

48, 1 1 4  39, 123  30, 1 32 9, 1 6  82, 1 52 72, 1 62 6 1 ,  1 73 

50, 1 1 8  40, 1 28 3 1 ,  1 37 9, 1 7  84, 1 59 74, 1 69 63, 1 80 

5 1 ,  1 23 42, 1 32 32, 1 42 9, 1 8  87, 1 65 76, 1 76 65, 1 87 

53, 1 27 43, 1 37 33, 1 47 9, 1 9  90, 1 71 78, 1 83 66, 1 95 

55, 1 3 1  44, 1 42 34, 1 52 9, 20 93, 1 77 8 1 ,  1 89 68, 202 

9, 21 95, 1 84 83, 1 96 70, 209 
36, 69 32, 73 28, 77 
38, 74 34, 78 29, 83 1 0, 1 0  78, 132  7 1 ,  1 39 63, 1 47 

40, 79 35, 84 30, 89 1 0, 1 1  8 1 ,  1 39  74, 1 46 65, 1 55 

42, 84 37, 89 3 1 ,  95 1 0, 1 2  85, 1 45 76, 1 54 67, 1 63 

44, 89 38, 95 32, 1 01 1 0, 1 3  88, 1 52 79, 1 61 69, 1 7 1  

46, 94 40, 1 00 33, 1 07 1 0, 1 4  9 1 ,  1 59 8 1 ,  1 69 7 1 ,  1 79 

48, 99 41 , 1 06 34, 1 1 3 1 0, 1 5  94, 1 66 84, 1 76 73, 1 87 

50, 1 04 43, 1 1 1  35, 1 1 9  1 0, 1 6  97, 1 73 86, 1 84 75, 1 95 

52, 1 09 44, 1 1 7  36, 1 25 1 0, 1 7  1 00, 1 80 89, 1 91 77, 203 

54, 1 1 4  46, 1 22 37, 1 3 1  1 0, 1 8  1 03, 1 87 92, 1 98 79, 21 1 

56, 1 1 9  47, 1 28 38, 1 37 1 0, 1 9  1 07, 1 93 94, 206 8 1 ,  2 1 9  

58, 1 24 49, 1 33 39, 1 43 1 0, 20 1 1 0, 200 97, 21 3 83, 227 

60, 1 29 50, 1 39 4 1 ,  1 48 1 1 ,  1 1  96, 1 57 87, 1 66 78, 1 75 
62, 1 34 52, 1 44 42, 1 54 1 1 ,  1 2  99, 1 65 90, 1 74 8 1 ,  1 83 
64, 139  53 ,  1 50 43, 1 60 1 1 ,  1 3  1 03, 1 72 93, 1 82 83, 1 92 
66, 1 44 55, 1 55 44, 1 66 1 1 ,  1 4  1 06, 1 80 96, 1 90 85, 201 
68, 1 49 57, 1 60 45, 1 72 1 1 ,  1 5  1 1 0, 1 87 99, 1 98 87, 2 1 0  

49, 87 43, 93 38, 98 
1 1 ,  1 6  1 1 4, 1 94 1 02, 206 90, 2 1 8  

1 1 ,  1 7  1 1 7, 202 1 05, 2 1 4  92, 227 
5 1 ,  93 45, 99 40, 1 04 

1 1 ,  1 8  1 2 1 ,  209 1 08, 222 94, 236 
53, 99 47, 1 05 4 1 ,  1 1 1  

1 1 ,  1 9  1 24, 2 1 7  1 1 1 ,  230 97, 244 
55, 1 05 49, 1 1 1  42, 1 1 8  
58, 1 1 0  51 , 1 1 7  43, 1 25 12 ,  1 2  1 1 5, 1 85 1 06, 1 94 95, 205 
60, 1 1 6 53, 123  45 ,  13 1  12 ,  13  1 1 9, 1 93 1 09, 203 98, 2 1 4  
6 3 ,  1 2 1  54, 1 30 46, 1 38 12 ,  1 4  1 23, 201 1 1 2, 2 1 2  1 00, 224 
65, 1 2 7  56, 1 36 47, 1 45 12 ,  1 5  1 27, 209 1 1 5, 221  1 03, 233 
67,  1 33 58, 1 42 49, 1 51 12 ,  1 6  1 3 1 ,  2 1 7  1 1 9, 229 1 05, 243 
70, 1 38 60, 1 48 50, 1 58 12 ,  1 7  1 35, 225 1 22, 238 1 08, 252 
72, 1 44 62, 1 54 5 1 ,  1 65 1 2 ,  1 8  1 39, 233 1 25, 247 1 1 1 ,  261 
74, 1 50 64, 1 60 53, 1 7 1  
7 7 ,  1 55 66, 1 66 54, 1 78 1 3, 1 3  1 37, 2 1 4  1 25, 226 1 1 4, 237 

79, 1 61 68, 1 72 56, 1 84 13 ,  1 4  14 1 ,  223 1 29, 235 1 1 6, 248 

82, 1 66 70, 1 78 57, 1 91 13 ,  1 5  1 45, 232 1 33, 244 1 1 9, 258 
13, 1 6  1 50, 240 1 37, 253 1 22, 268 

63, 1 08 56, 1 1 5  50, 1 2 1  13 ,  1 7  1 54, 249 1 40, 263 1 25, 278 

65, 1 1 5  58, 1 22 52, 1 28 1 4, 1 4  1 60, 246 1 47, 259 1 34, 272 
68, 1 2 1  6 1 ,  1 28 53, 1 36 1 4, 1 5  1 64, 256 1 51 ,  269 1 37, 283 
7 1 ,  1 27 63, 1 35 55, 1 43 1 4, 1 6  1 69, 265 1 55, 279 1 40, 294 
73, 1 34 65, 1 42 56, 1 51 
76, 1 40 67, 1 49 58, 1 58 1 5, 1 5  1 85, 280 1 7 1 ,  294 1 56, 309 



Table A9 Random numbers. 

Reproduced from Table XXXlll of Fisher and Yates (1 963) following Armitage (1 971 ) by permission of the authors and publishers. 

03 

97 

1 6  

1 2  

55 

1 6  

84 

63 

33 

57 

1 8  

26 
23 

52 

37 

70 

56 

99 

1 6  

31  

68 

74 

27 

00 

29 

47 43 

74 24 

76 62 

56 85 

59 56 

22 77 

42 1 7  

01 63 
21 1 2  
60 86 

1 8  07 

62 38 

42 40 

36 28 

85 94 

29 1 7  
62 1 8  
49 57 

08 1 5  

1 6  93 

34 30 

57 25 

42 37 

39 68 

94 98 

73 

67 

27 

99 

35 

94 

53 

78 

34 

32 

92 

97 

64 

1 9  

35 

1 2  

37 

22 

04 

32 

1 3  

65 

86 

29 

94 

86 

62 

66 

26 

64 

39 

31 

59 

29 
44 

46 

75 

74 

95 

1 2  

1 3  

35 

77 

72 

43 

70 

76 

53 

61  

24 

36 

42 

56 

96 

38 

49 

57 

1 6  
78 
09 

44 

84 

82 

50 

83 

40 

96 

88 

33 

50 

55 

59 

48 

66 

68 

96 

81 

50 

96 

54 

54 

24 

95 
64 

47 

1 7  

1 6  
97 

92 

39 

33 

83 

42 

27 

27 

74 

29 

55 

37 

49 

47 

1 4  

26 

68 

82 

43 

55 

55 

56 
27 

1 6  

07 

77 

26 

50 

20 

50 

95 

1 4  

89 

30 

97 

90 

32 

69 

36 

57 

71 

2 7  
46 

54 

06 

67 

07 
96 

58 

44 

77 

1 1  

08 

38 

87 

45 

34 

87 

77 

68 

65 

20 

1 0  

61  

20 

07 

3 1  

2 2  

8 2  

8 8  

1 9  

82 
54 

09 
99 

81  

97 

30 

26 

75 

72 

09 

1 9  

40 

60 

72 

30 

82 

46 

42 

32 

05 

31 

1 7  

77 

98 

52 
49 

79 

83 

07 

00 

42 

1 3  

97 

1 6  

45 

20 

44 

71  

96 

77 

53 

98 

53 

90 

03 

62 

37 

04 

1 0  

42 

1 7  

83 

1 1  
45 

56 

34 

89 

1 2  

64 

59 

1 5  

22 

91 

57 

84 

75 

63 

32 

79 

72 

43 

93 

74 

50 

07 

46 

86 

46 

32 

76 

07 

51 

25 

36 

34 

37 

78 

38 

69 

57 

91 

71 

37 

78 

93 

09 

23 

47 

71  
44 

09 

1 9  

32 

14 

3 1  

9 6  

0 3  

9 3  

1 6  

68 

00 

84 

67 

36 

03 

93 

62 

32 

53 

1 5  

90 

78 

67 

75 

38 

62 

62 

24 

08 

38 

88 

74 

47 

00 

49 

49 

26 

54 

1 0  

29 

30 

33 

27 

1 3  

57 

06 

87 

21 

1 2  

1 5  
90 

06 

20 

32 

80 

54 

1 7  

70 

04 

1 2  

52 

04 

1 3  

96 

1 0  

34 

26 

07 
55 

1 2  

1 8  

35 

76 

86 

5 1  

52 

76 

1 4  
98 

22 

42 

76 

33 

43 

72 

85 

33 

58 

46 
45 

25 

1 6  

36 

38 

1 0  

44 

20 

33 

73 

00 

84 

50 

85 

94 

02 

06 

37 

24 

1 8  

07 

66 

46 

1 8  

92 

65 

20 

80 45 

07 51 

58 59 

1 4  21  

32 53 

96 43 

50 25 
58 07 

1 3  42 

77 27 

03 1 0  

88 45 

07 72 

53 53 

87 98 

1 3  04 

03 54 

66 79 

34 45 

60 44 

09 52 

24 76 

42 45 

04 26 

57 27 

60 

24 

88 

88 

23 

84 

83 

44 

99 

08 

55 

1 0  
93 

86 

35 

07 

97 

94 

99 

38 

68 

1 5  

97 

1 1  

40 

1 1  1 4  

5 1  79 

97 54 

26 49 

83 01 

26 34 

92 1 2  

39 52 

66 02 

02 73 

23 64 
93 72 

85 79 

60 42 

85 29 

74 21 

77 46 

77 24 

27 72 

68 88 

07 97 
54 55 

60 49 

04 96 

48 73 

1 0  95 

89 73 
1 4  1 0  

81  76 

30 30 

91 64 

06 76 

38 79 

79 54 
43 28 

05 05 
88 71  

1 0  75 

04 53 

48 39 

1 9  30 

44 80 

2 1  90 

95 1 4  

1 1  80 

06 57 

95 52 

04 9 1  

67  24  

51  92 



1 6  90 

1 1  27 

35 24 

38 23 

31  96 

66 67 

14 90 

68 05 

20 46 

64 1 9  

05 26 

07 97 

68 71  

26 99 

14 65 

1 7  53 

90 26 
41 23 

60 20 

91  25  

34 50 

85 22 

09 79 

88 75  

90 96 

82 66 59 
94 75 06 

1 0  1 6  20 

1 6  86 38 

25 91 47 

40 67 1 4  

84 45 1 1  

51 1 8  00 

78 73 90 

58 97 79 

93 70 60 

1 0  88 23 

86 85 85 

61 65 53 

52 68 75 

77 58 71 

59 21  19 

52 55 99 

50 81 69 

38 05 90 

57 74 37 

04 39 43 

1 3  77 48 

80 1 8  1 4  

23 70 00 

83 

06 

33 

42 

96 

64 

75 

33 

97 

1 5  

22 

09 

54 

58 

87 

71 

23 

31  

31  

94 

98 

73 

73 

22 

39 

62 

09 

32 

38 

44 

05 

73 

96 

51  

06 

35  

98 

87 

37 

59 

41 

52 

04 

99 
58 

80 

81  

82 

95 

00 

64 1 1  1 2  

1 9  74 66 

5 1  26 38 

97 01 50 

33 49 1 3  

71 95 86 

88 05 90 

02 75 1 9  

40 1 4  02 

1 5  93 20 

85 1 5  1 3  

42 99 64 

66 47 54 

78 80 70 

36 22 41 

61 50 72 

23 33 1 2  

49 69 96 

73 68 68 

28 41 36 

33 00 91 

53 94 79 

97 22 21 

75 42 49 

03 06 90 

67 

02 

79 

87 

34 

1 1  

52 

07 

04 

01 

92 

61 

73 

42 

26 

1 2  

96 

1 0  

35 

45 

09 

33 

05 

39 

55 

19 00 71 74 

94 37 34 02 

78 45 04 91 

75 66 81 41 

86 82 53 91 

05 65 09 68 

27 41 1 4  86 

60 62 93 55 

02 33 31 08 

90 1 0  75 06 

03 51  59 77 

71 62 99 1 5  

32 08 1 1  1 2  

1 0  50 67 42 

78 63 06 55 

41 94 96 26 

93 02 1 8  39 

47 48 45 88 

81  33 03 76 

37 59 03 09 

77 93 1 9  82 

62 46 86 28 

03 27 24 83 

32 82 22 49 

85 78 38 36 

60 47 

76 70 

1 6  92 

40 01 

00 52 

76 83 

22 98 

59 33 

39 54 

40 78 

59 56 

06 51 

44 95 

32 1 7  

1 3  08 

44 95 

07 02 

1 3  41 

24 30 

90 35  

74 94 

08 31 

72 89 

02 48 

94 37 

21  29 68 
90 30 86 

53 56 1 6  

74 91  62 

43 48 85 

20 37 90 

1 2  22 08 

82 43 90 

1 6  49 36 

78 89 62 

78 06 83 

29 1 6  93 

92 63 1 6  

55 85 74 

27 01 50 

27 36 99 

1 8  36 07 

43 89 20 
1 2  48 60 
57 29 1 2  

80 04 04 

54 46 31 

44 05 60 

07 70 37 

30 69 32 

02 02 37 03 31 

38 45 94 30 38 

02 75 50 95 98 

48 51 84 08 32 

27 55 26 89 62 

57 16 00 1 1  66 

07 52 74 95 80 

49 37 38 44 59 

47 95 93 13 30 

02 67 74 17  33 

52 91 05 70 74 

58 05 77 09 51 

29 56 24 29 48 

94 44 67 16 94 

1 5  29 39 39 43 

02 96 74 30 83 

25 99 32 70 23 

97 17  14 49 1 7  

1 8  99 1 0  72 34 

82 62 54 65 60 

45 07 31  66 49 

53 94 13 38 47 

35 80 39 94 88 

16 04 61 67 87 

90 89 00 76 33 

(continued) 



Table A9 Random numbers (continued) .  

53 74 23 

63 38 06 

35 30 58 

63 43 36 

98 25 37 

02 63 21  

64 55 22 

85 07 26 

58 54 1 6  

34 85 27 

03 92 1 8  

62 95 30 

08 45 93 

07 08 55 

01 85 89 

72 84 71  

88 78 28 
45 1 7  75 

96 76 28 

43 31 67 

50 44 66 

22 66 22 

96 24 40 

31 73 91  

78 60 73 

99 67 

86 54 

2 1  46 

82 69 

55 26 

1 7  69 

2 1  82 

1 3  89 

24 1 5  

84 87 

27 46 
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1 5  22 
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1 4  35 

1 6  84 

65 57 
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72 30 
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61 

99 
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01 
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22 

20 

89 

28 
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82 

80 

28 

07 

44 

64 
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41 

75 

75 
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58 
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1 1  

94 

58 

75 

30 

72 

94 

69 

26 
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37 

81 

89 

06 

82 

82 
56 

96 

66 

46 
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34 

49 

94 

72 

94 

08 

05 

41 

88 

93 

36 

84 

94 

94 

88 

46 

56 

DO 

04 

OD 

26 

S6 

48 

91 

90 

88 

26 

53 

1 2  

2S 

63 

62 

99 

S7 

48 

4S 

94 

02 

2S 

61 

74 

38 

61 

S9 

62 

90 

30 

86 

98 

24 
1 S  

so 
7S 

25 

71 

38 

68 

S8 

9S 

98 

S6 

62 

82 

21 

38 

71  

1 S  

S4 

63 
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unbalanced design 85 

anthropometric data 1 1 8, 1 26 
antilogs 1 22 

rules of 1 56 
see also exponential function 

association see measures of association 
attributable risk 449-50 

comparison with relative measures 450-1 
population 45 1-2 
proportional 450, 45 1 ,  452 

balanced design 83-5 
bar chart (bar diagram) 1 6  
baseline exposure group ( in regression 

models) I 04, 1 90, 1 98, 1 99, 250, 256, 288 
Bayes' formula see Bayes' rule 
Bayes' rule 1 32, 1 33, 1 34--5, 388 

Bayesian approach (lo inference) 5, 1 32, 1 34, 
388-9 

cf frequenlist statistics 389-90 
bell-shaped curve 20 
beta-coefficients 90 
between-cluster variation 363 
between-person variation 69 
bias 1 29, 440 

confounding 1 78 
differential 429 
in meta-analysis 38 1-6 
publication 382 
regression dilution 442-3 
selection 429 
see also error 

bias corrected (BC)  bootstrap confidence 
intervals 35 1  

bias corrected and accelerated ( BCa) bootstrap 
confidence intervals 3 5 1  

bimodal distribution 20 
binary exposure variables ( in regression 

models) I 03--4, 1 90-6, 250-5, 288-9 
binary variable 1 1 , 1 29 
binomial probability distribution 1 3 1 ,  1 39--43 

general formula 1 4 1  
normal approximation t o  1 43 
shape 1 42 

Bland-Altman plot 440, 446 
body mass index (BM l )  1 2 ,  46 1 
bootstrapping 55, 67, 343, 350-3 
bootstrap confidence intervals 350-3 
box and whiskers plot 24, 27, 29, 35 
BUGS 391  

Campbell Collaboration 373 
case-control studies 1 63, 2 1 4, 4 1 0- 1 3  

interpretation o f  odds ratio 4 1 2  
matched, analysing 2 1 8- 1 9, 4 1 0- 1 2 
summary of statistical methods 4 1 1 
unmatched, analysing 4 1 0  

categorical exposure variables ( in regression 
models) 1 98, 20 1-6, 256-9 

categorical variables 1 1  
censored data/censoring 228, 273 
centile (percentile) 25, 3 5 1  
Central Limit Theorem 43, 304 
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centring 9 1  
chi-squared distribution, percentage points 476 
chi-squared (x2) test 1 65, 476 

r x c ( larger) contingency tables 1 7 1-3 
2 x 2 contingency table 1 66-9 

comparison of two proportions 1 67-8 
continuity correction 1 68 
exact test for 1 65, 1 68, 1 69-7 1  
normal test c f  1 67-8 
quick formula 1 67 
validity 1 68-9 

goodness or fit test 1 1 5- 1 7 
calculation of expected numbers 1 1 6 
validity 1 1 6- 1 7  

o f  heterogeneity 1 86, 248, 322, 377 
for ( linear) trend (ordered exposures) 1 65, 

1 73-6 
departure from 1 76 

Mantel-Cox) 284--6 
Mantel-Haenszel methods 1 83-5,  247-8 
McNemar's 2 1 8  

clinical trial 1 54, 2 1 4  
cluster analysis 1 06, 365-6 
cluster randomized trials 355-6, 403, 404 
cluster sampling 356 
clustered data 1 36, 226, 355-70, 403, 405 

adj usting sample size calculations 423-5 
analyses using summary measures 356, 358-9 
generalized estimating equations (GEE) 356, 

366-8 
random effects (mult ilevel) models 356, 36 1-6 
robust standard errors 356, 359-60 
summary of approaches 368-70 

Cochrane Collaboration 372-3 
coefficient of variation 37, 424 
cohort life table 273 
cohort studies 225 
collinearity 3 1 6, 337-9 
common disease 230, 449 
concealment of allocation 396 
concordant pairs 2 1 5  
concurrent controls 4 1 2  
conditiqnal likelihood 288, 3 1 7  
conditional logistic regression 2 1 9, 220-3, 4 1 2  

controlling for confounders 222-3 
effect of a single exposure variable 222 

conditional probability 1 33, 1 34, 388 
conditional regression models 3 1 7  
confidence interval 3 1 ,  4 1 ,  50--7 

alternatives 55-6 
based on log likelihood ratio 30 1-5 
bootstrap 350-3 
comparison of paired measurements 67-9, 2 1 6  
comparison o f  two means 

large samples (or known sd's) 60- 1 
paired measurements 67-9 
small samples, equal sd's 64--6 

efficacy 455 
general form 73-4 
geometric mean 1 23 
interpretation 52-3, 76-9 
Mantel-Cox estimate of the hazard ratio 284 
Mantel-Haenszel odds ratio 1 83 

Mantel-Haenszel rate ratio 246-7 
median 348-9 
non-parametric 55, 346-7, 349 
odds 1 63-4 
odds ratio 1 63-4, 2 1 7  
Poisson regression 254 
rate ratio 242 
cf reference ranges 56-7 
risk ratio 1 55-8 
for a single mean 50-7 

large sample case 50-2 
severe non-normality 55 
smaller samples 53-5 
summary of alternatives 55-6 

for a single proportion using the normal 
distribution 1 43-4 

smaller samples 53-5 
survival curve 276, 278 
using robust standard errors 353-3, 359-60 
using / distribution 54--5, 64--6 

confidence limits 5 1  
see also confidence intervals 

confounding 1 29, 1 77-80 
bias 1 77 
controlling for 

in conditional logistic regression 222-3 
general strategy/choice of variables 462-5 
in logistic regression 205- 1 0  
i n  multiple regression 98 
in Poisson regression 258-9 
using stratification 1 8 1 ,  243 

interaction and 329 
variable 1 78, 243, 463-5 

consistency checks 459 
CONSORT statement 382, 396-9 

see also randomized controlled trials 
constant term 1 92, 1 94, 252 

see also intercept, baseline group 
contingency table 25 

see chi-squared Cx2) test for 
continuation ratio model 2 1 3  
continuity correction 1 45-6, 1 53, 1 68 
continuous monitoring 407 
continuous variable 1 1  
control (placebo) group 72, 1 48, 396 
controlling/adjusting for I 0 I 

see also confounding 
converged fit 308 
Cook's D 1 1 4 
correlation 93-6 

intraclass ( ICC) 364--5, 424, 437-9 
Kendall's tau 344, 349-50 
Pearson product moment 93-6, 349 
Spearman's rank 344, 349-50 

correspondence analysis 1 06 
covariates I 06 
Cox regression (proportional hazards 

regression) 262, 287-94, 3 1 6, 3 1 7  
choice o f  time axis 290-3 
l inks between Poisson regression and 293 
non-proportional hazards 289-90 
proportional hazards model 287 

cross tabulations 25-6 



crossover trials 402-3, 405 
cross-product ratio 1 59 
cross-sectional study 407-9 

summary of statistical methods 408 
cross-sectional t ime series 36 1  
crude association 461 

see also univariable analysis 
cumulative frequency distributions 2 1-5 
cumulative hazard 28 1 
cumulative incidence ( risk)  1 46-7, 230 
cumulat ive percentages 2 1  
current l ife table 273 

data 
checking 459 
clustered see clustered data 
coding 1 9 1  
dredging 467 
-driven comparisons 467-8 
processing errors 429 
reduction 460- 1 

deciles 25 
degrees of freedom 35, 54, I 1 6  
delta method 1 55 ,  1 57, 238, 242 
dependent variable see outcome variable 
descriptive analysis 459 
design 

balanced 83-5 
cluster 423-4 
double-blind 396 
effect 424 
l ink ing analysis to 395-4 1 2  
matched 2 1 4  
unbalanced 83 

development dataset 342 
diagnostic tests, evaluat ion of 430-3 

choosing cut-offs for 432-3 
predictive values 43 1-2 
sensitivity and specificity 430- 1 

dichotomous variable 1 1  
differential bias 429 
discordant pairs 2 1 5, 2 1 9  
discrete variable 1 1  
distribut ion see frequency distribution 
dose-response model 1 76 
dose-response relationship ( t rend) 336 

in regression models 330-7 
double blind design 396 

effect modification 1 85-8, 2 1  I ,  259 
practical approach to examin ing for 1 88 
in regression models 322-30 
testing for 1 86-7 
see also heterogeneity, interaction 

epidemiological study 1 54 
error 92 

data processing 429 
instru mental 429 
measurement 429-46 

implications for in terpretation 442-6 
observer 429 
respondent 429 
sampling 3 1  
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standard see standard error 
types I and I I 425 

error factor (EF)  1 56, 1 63-4, 2 1 7, 2 1 9, 255. 308 
evidence-based medicine 7-8, 3 7 1  

see also meta-analysis, systematic reviews 
exact methods 1 43 
exact test for a 2 x 2 table 1 65, 1 68, 1 69-7 1 
expected numbers 1 1 6, 434 

see also chi-squared ( x 2 )  test, kappa statistic 
explanatory variable see exposure variable 
exponential function I 1 9  

see also anti logs 
exposure ( t reatment )  group 1 4, 58, 1 48 
exposure variable 1 3, 1 4  

that changes over time 249 
selection of 339-42 

external val idity 399 
extra-linear variation 33 1 

F distribution 82 
F test 8 1  
factor analysis I 06 
family studies 356 
Fisher-Behrens test 67 
Fisher's transformation 95-6 
five-bar gates 1 8  
fixed effect 85-6 
fixed-effect meta-analysis 374-7 

forest plots 376-7 
heterogeneity between studies 377 
sparse data 376 

now diagram ( for CO SORT statement )  396-7 
follow-up times 227-9 

see also period of observation 
forest plots 376-7 
fourth moment 1 1 0 
frequencies 1 5- 1 6 

cumulat ive 2 1  
relative 1 5  

frequency distributions 
bell-shaped 20 
bimodal 20 
binomial 1 39-42 
chi-squared see chi-squared (x2 )  test 
cumulative 2 1-5 
F 82 
gamma 294, 361 
Gaussian see normal distribution 
Gompertz 294 
J-shaped ( reverse) 2 1 ,  55 
log-logistic 294 
lognormal 1 20, 294 
moments of I I 0 
negative binomial 36 1  
normal see normal distribution 
numerical variables 1 6- 1 8  
Poisson 225, 227, 233-7 
population 20 
shapes of 20-1 
skewed 20 
symmetrical 20 
I 54, 473-5 
tai ls 20 
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freq uency distributions (cont.)  
uniform 2 1  
unimodal 20 
Weibull 294 

frequency matched cases and controls 4 1 2  
frequency polygon 1 9-20 
frequentist definition (of probability) 1 3 1 -2 
freq uentist statistical inference 

cf Bayesian approach 389-90 
funnel plots 382-6 

asymmetry in 384-5 
to examine bias 382-4 
poor trial quality 38 1 -2 
statistical tests for 385-6 
see also meta-analysis 

general linear models 3 1 6  
generalized estimating equations (GEE) 356, 

366-8, 369 
generalized linear models 2 I I ,  3 1 7, 340 
geometric mean 34, 1 2 1 -3 
Gibbs Sampling 39 1 
gold standard 430 
goodness of fi t  see chi-squared (x2) test 
growth charts 49 
growth curves I 3 

hazard 272, 28 1 
comparison using Mantel-Cox methods 283-6 
links between survival risks and 283 

hazard ratio 283-4, 288 
heterogeneity, tests of 374 

see also effect modification, interaction 
hierarchical models 36 1 
histograms I 8- 1 9  
Hodges-Lehmann estimates o f  shift 349 

see also confidence interval, median 
homogeneity, tests of 1 86-7 
hypothesis (significance) test 7 1 -3 

implications of study power for 
interpreting 426-8 

types of error 425-6 
see also ?-value 

impact see measures of impact 
incidence 1 46-7 

cumulative 1 46 
incidence rate ( incidence density) 1 47, 229 
independence assumption 1 35 
independent events I 33 
independent variable I 4 

see also exposure variable 
indicator variables 1 03, 200, 257, 328 
influence I 1 3-4 
information 305 

see also likelihood ratio 
informative censoring 273 
intention to treat analysis 396, 400- 1 
interaction 84, 1 85- 1 88, 248, 259 

analysing for 465-6 
between two exposures 324-7 
confounding and 329 
investigating in regression models 322-30 

likelihood ratio test for 328 
power in tests for 330 
see also effect modification, heterogeneity 

intercept 88, I 0 I ,  256 
see also constant term 

internal validity 400 
interpretability 1 1 8 
interquartile range 24, 34 
intervention-control comparison 405-6 
intervention studies 225, 405-6 

see also randomized controlled trials 
intraclass correlation coefficient ( ICC) 364-5, 424 

link between weighted kappa and 439 
reliability and 437-9 

inverse normal I 09 
inverse normal plot I 08-9 
inverse variance method (in meta-analysis) 375 
iteration 308 

jittering 27, 28 

Kaplan-Meier estimate of survival curve 276-8 
Kaplan-Meier plots 2 I ,  278, 280 
kappa statistic 433-7 
Kendall's S test 345 
Kendall's tau 345, 349-50 
Kruskal-Wallis one-way analysis of variance 345 
kurtosis 1 09- 1 0  

least squares 88 
Lexis diagram 262 
life expectancy 276 
life tables 273-6 
likelihood 5, 297-3 1 4  

conditional 288, 3 I 7 
in the comparison of two groups 305-8 
for hypothesis testing 309- 1 3  
confidence interval, supported ranges 

and 304-5 
in more complicated models 308-9 

likelihood ratio 300-1 
information and standard error 305 
quadratic approximation to log 30 1 -4  
supported range and confidence interval 

for 301-5 
likelihood ratio statistic ( L RS) 309, 3 1 0- 1 1 ,  3 1 3 ,  

3 1 9  
likelihood ratio test 309- 1 0, 3 1 9  

for clustering 362 
in regression models 3 1 3- 1 4, 328 
see also Wald test 

limits of agreement 44 1 
l ine of equality 440 
linear effects in regression 203, 258, 330-7 
linear predictor 1 05, 1 97, 256, 3 1 6  
l inear regression 3 1 ,  87-93 

analysis of variance approach 96-7 
assumptions 92-3 
computer output 9 1 -2 
dose-response relationships i n  300-7 
line 88, 89 
parameters (coefficients) 88-9 1 
prediction 93 
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l ink function 2 1 1 , 3 1 7  
Jog-logistic function 294 
log rank test 283-6 

see also M antel-Cox test 
log scale 307 
logarithmic transformation 1 1 3, 1 1 8-24 

analysis of titres 1 24 
to base I 0 I 1 8- 1 9  
t o  base e 1 1 9 
confidence interval 1 2 1 -3 
geometric mean 1 2 1-3 
non-linear relationship 1 2 3  
positively skewed distributions 1 20 
unequal standard deviations 1 20- 1 

logistic regression 1 29, 1 89-223, 3 1 6  
coefficients 1 94, 1 97 
computer package for 1 9 1  
conditional see conditional logistic regression 
derivation of name 1 97 
for comparing two exposure groups 1 90-6 
for comparing >2 exposure groups 1 98-20 1 
controlling for confounding 205- 1 0  
general form o f  equation 1 97-8 
multinomial (polychotomous) 2 1 2  
for ordered and continuous exposure 

variables 20 1 -4  
ordinal 2 1 2- 1 3  

logit function 1 97 
see also logistic regression 

longitudinal studies 407 
analysis of 225-94 
repeated measures 355 
summary of statistical methods 407-9 
see also rates, period of observation, Poisson 

regression, Cox regression 
lower quartile 23 
lower tail of the distribution 20 

main effect of a factor 84 
Mann Whitney U test 345 
Mantel-Cox methods 283-6 
Mantel-Haenszel methods 208, 209, 243 

comparison of proportions: paired case 
2 1 6- 1 8  

for rate ratios 243-8 
x2 test statistic 247-8 

for 2 x 2 contingency tables 1 8 1 -5 
x2 test statistic 1 83-5 
odds ratio controlled for confounding 1 8 1 -3 
val idity 1 85 

use in meta-analysis 375 
marginal models 369 
marginal totals 26 
Markov chain Monte-Carlo (MCMC) 

methods 390- 1 
matched data 1 29, 2 1 4-223 
matched design 2 1 4  

i n  case-control studies 2 1 8-223 
maximum-l ikelihood estimate ( M LE )  298-9, 3 1 7  
McNemar's chi-squared test 2 1 8  
mean 3 1 ,  33 

calculating from a frequency distribution 37-8 
geometric 34, 1 2 1-4 

population 38-9 
sample 38-9 
standardized 264 

mean square (MS) 8 1  
measurement error 429-46 
measures of association 447-9 
measures of exposure effect 1 49 
measures of impact of an exposure 449-54 

attributable cf relative measures 450-1 
attributable risk 449-50 
population attributable risk 45 1 -2 
allowing for potential reduction in 

prevalence 452-4 
measures of the impact of a treatment 454-7 

efficacy 454-5 
number needed to harm ( N N H )  456-7 
number needed to treat ( NNT) 455-6 

median 22-5, 33 
meta-analysis 5, 8, 373-4 

bias in 38 1 -6 
of observational studies 386-7 
see also fixed-effects and random effects 

meta-analysis 
meta-regression 38 1 ,  385 

see also meta-analysis 
method comparison studies 439-42 
misclassification in mult ivariable models 443-4 
mixed models 36 1  
mode 34 
model assumptions, relaxing 343-54 
model parameters 88, 1 90, 250 

see also regression coefficient 
multilevel (random effects) models 356, 36 1 -6, 

370 
multinomial (polychotomous) logistic 

regression 2 1 2  
multiple comparisons 467 
multiple correlation coefficient 1 02 
multiple linear regression 3 1 ,  80, 98- 1 06, 340, 465 

analysis of variance and I 02-3, I 06 
with categorical exposure variable 1 03-5 
general form l 05 
cf generalized linear models 3 1 7  
with non-linear exposure variable I 05 
with two exposure variables 99- 1 03 

multipl icative model 1 9 1 ,  1 98, 207, 256 
multiplicative rule for probabilities 1 32-3 
multivariable regression models I 06 
multivariate analysis I 06 

natural logarithms 1 1 9 
negative binomial regression model 36 1  
negative predictive value 43 1 
negatively skewed curve 20 
Nelson-Aalen estimate of the cumulative hazard 

function 28 1 
non-parametric confidence interval 55 

for median difference 346-7 
Hodges-Lehmann estimates of shift 349 

non-parametric methods based on ranks 343-50 
non-proportional hazards 289-90 
normal distribution 3 1 ,  37, 42-9, 50-2 

approximation to binomial distribution 1 43 
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normal distribution (col//. ) 

area under curve 45-7 
equation of curve 43-4 
importance 43 
percentage points 47-9 
reference ranges 47-9 
standard normal 45 

table of areas in tails 470- l 
table of percentage points 472 

normal test see z-test 
nul l  hypothesis 5, 62, 72, 309 

see also hypothesis test, P-value 
number needed to harm (N N H )  456-7 
number needed to treat (NNT) 455-6 
numerical taxonomy 1 06 
numerical variables 1 1  

observations I 0 
observer error 429 
odds 1 36-7, 1 59 

confidence interval 1 63-4 
of exposure 1 63 
observed 2 1 0  
properties o f  1 37 

odds ratios (OR)  1 50, 1 57, 1 59-64, 448 
confidence interval 1 63-4, 2 1 7  
Mantel-Haenszel estimate, controlled for 

confounding 1 8 1-3 
for paired data 2 1 6- 1 8  
properties of 1 60 
rate ratios cf 243 
rationale for the use 1 62-3 
risk ratios cf 1 60-2, 448-9 
see also logistic regression 

offset in Poisson regression model 252, 256 
one-sided P-value 63 
ordered categorical variables 1 1 , 2 1 2  
ordinal logistic regression 2 1 2- 1 3  
outcome 1 3  

binary 1 29 
common 1 63 
expressing 3 1 8  
numerical 3 1  
rare 1 62 

outliers 1 5, 1 1 2, 459 

paired measurements 59, 2 1 4  
see also matched data 

paired t test 66, 85 
parallel group trial 402 
parameter estimates 1 93, 253 
parameters 88, 1 90, 250 

see also regression coefficient 
parametric survival models 294 
participant now 399-400 
Pearson product moment correlation 93-6, 349 

see also correlation 
percentage points 47-9 

one-sided 48 
two-sided 48 

percentile (centile) 25, 3 5 1  
period of observation (follow-up t ime/person

years-at-risk) 228 

calculating with statistical computer 
packages 229 

pie chart 1 6, 1 7  
placebo (control) group 72, 1 48, 396 
Poisson distribution 225, 227, 233-7 

for analysis of rates 237-8 
definition 234--5 
shape 235 
use of 236-7 

Poisson regression 226, 249-62, 3 1 6, 3 1 7  
fo r  categorical and continuous exposure 

variables 256-8 
for comparing >2 exposure groups 257 
for comparing two exposure groups 250-6 

output on the log scale 253-4 
output on the ratio scale 252-3 
relationship between outputs on ratio and 

log scales 255 
using computer package to fit 252 
controlling for confounding 258-9 
general form of model 255-6 
for indirect standardization 270- 1 
links between Cox regression and 293 
offsets in 252, 256 
for ordered and continuous exposure 

variables 258 
variables that change with time 259-62 

polychotomous (multinomial) logistic 
regression 2 1 2  

population 9, 447 
attributable risk 45 1 ,  452 
mean 38-9 
standard deviation 39 

positive predictive value 43 1 
positively skewed curve 20 
posterior distribution 389 
posterior probabi l i ty 1 32 
power 4 1 4, 425 

implications for interpretation of significance 
tests 426-8 

relation with Type If error 425 
power transformation 1 25 
pre-post comparison 405 
prevalence 1 46-7 
principal component analysis 1 06 
prior distribution 388-9 
prior probability 1 32 
probability 1 3 1-2, 1 38 

additive rule for 1 32, 1 33-4 
calculations 1 32-4 
conditional 1 33 ,  1 34, 388 
defining 1 3 1 -2 
frequentist defini tion 1 3 1 -2 
independence assumption 1 35-6 
multiplicative rule for 1 32-3 
odds and 1 36-7 
posterior 1 32 
prior 1 32 
subjective (or Bayesian) definition 1 32 
survival 275, 277 

probit 1 09, 477-8 
product-limit formula 277 
profile Jog likelihood 307 
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proportional attributable risk 450, 45 1 ,  452 
proportional hazards assumption 278-83 

see also Cox regression 
proportional odds model 2 1 3  
proportions 1 29, 1 38-47 

binomial distribution and 1 39 
comparison of two proportions 1 48-64 

pai red case 2 1 4-8 
standard error 1 43 

prospective studies 407 
pu blica ti on bias 382 
?-value (significance level) 5, 3 1 ,  59, 62, 72-3, 

309 
interpretation 74-6 
one- and two-sided 63 
in regression model 340-1 
study power and interpretation 426-8 
use in interpreting results 76-9 
see also hypothesis test 

quadratic approximation 302 
quadratic relationship 335 
quanti les 25 
quartiles 22-5 
quasi-likelihood estimation 366 
quinti les 25 

r x c contingency tables see contingency table 
random effects 85-6 
random-effects meta-analysis 374, 377-8 1 

estimating between-study variance 378-9 
fixed-effect cf 3 79-80 
summary estimate from 378, 380- 1 

random effects ( mult ilevel) models 356, 36 1 -6, 
370 

random number table 482-5 
randomization 1 80, 396 
randomized control led trials (RCTs) 396-405, 

458 
adjustment for baseline variables 40 I 
analysis of baseline variables 400, 40 I 
analysis plan 397-9 
cluster randomized trials 355-6, 403 
CONSORT statement 396-9 
crossover trials 402-3, 405 
double blind design 396 
intention to treat analysis 396, 400- 1 
participant now 399-400 
subgroup analyses 402 
summary of statistical methods 403-5 
valid ity 399-400 
see also allocation concealment, meta-analysis, 

placebo 
range 24, 34-5 

in terquartile 24 
range checks 459 
rank correlations 349 
rate 1 1 , 229-33 

comparing 240-8 
confidence interval for 238-9 
of disease and mortality 225 
formal definit ion 233 
relationship with risks 230-3 

standard error 237 
rate d ifference 227 

confidence interval 240-1 
standard error 241 

rate ratio 227,  240, 24 1 -2, 249, 448 
95% confidence interval 242 
Mantel-1-!aenszel estimate. controlled for 

confounding 243-8 
risk ratio, odds ratio and 243, 448-9 
standard error of log rate ratio 24 1 -2 
�-test 242-3 
see also Poisson regression 

ratio measures (standard error and confidence 
interval) 1 55 

Receiver Operating Characteristic ( ROC) 
curve 432-3 

reciprocal transformation 1 25 
reference curves 1 3 , 49, 1 1 8, 1 26 
reference data 1 26 
reference ranges 49 

cf confidence intervals 56-7 
regression diagnostics 1 1 1- 1 5  

innuence 1 1 3- 1 5  
plots o f  residuals against fitted values 1 1 2- 1 3  
residuals 1 1 1 - 1 2  
violation o f  regression assumptions 1 1 5 

regression di lution bias 442-3 
regression modelling 3 1 5-42 

coefficients 88, 1 94, 1 97, 254, 256, 3 1 6  
collinearity 3 1 6, 337-9 
for clustered data 355-70 
dose-response relationships ( linear 

effects) 330-7 
testing for departure from l inearity 332-6 
unexposed groups and 336 

general linear 3 1 6  
generalized linear 3 1 7  
hypothesis testing i n  3 1 8-22 
indicator variables, use of 200, 328 
interaction (effect modification) 322-30 

confounding and 329 
between the two exposures 324-7 
with continuous variables 328-9 
likelihood ratio test for 328 
> 2 va ria bl es 330 
power in  tests for interaction 330 

likelihood ratio tests 3 1 3- 1 4, 3 1 8- 1 9  
l inear effects i n  330-7 
link function 3 1 7  
measurement error, effects o f  442-6 
multi level (random effects) 36 1 -6 
outcome variable, deciding how to express 3 1 8  
selection o f  exposure variables 339-42 

estimating effect of a particular 
exposure 340 

explanatory model for the outcome 342 
implication of type of regression model 

340 
model to predict the outcome 340-2 
stepwise variable selection in 34 1 

sum of squares 96 
types or 3 1 6- 1 7  
Wald test 3 1 8  
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regression modelling (cont. ) 

see also conditional logistic regression; Cox 
regression; generalized estimating 
equations; linear regression; logistic 
regression, meta-analysis; multiple linear 
regression; Poisson regression 

regression to the mean 44 1 ,  442, 444-6 
relative frequencies 1 5  
relative risk see risk ratios 
reliability 433-9, 466-7 
repeated cross-sectional surveys 407 
repeated measurements of exposure 261 
reprod ucibility ( reliabil ity) 433-9, 466-7 
residual sum of squares 8 1 ,  84, 96, 1 1 1  
residuals 92, 354 
respondent errors 429 
response variable 1 4  

see also outcome variable 
retrospective data 407 
reverse J-shaped distribution 2 1 ,  55 
risk 1 3  l ,  1 38 

attributable see attributable risk 
population 45 1 -2 
relationship with rate 230-3 

risk differences 1 50, 1 5 1 -3 
standard error 1 5 1 -2 
z-test 1 52-3 

risk factor 1 4  
see also exposure variable; case-control studies 

risk ratios (relative risk; R R )  1 50- 1 ,  1 53-9, 
447-8 

confidence interval 1 55-8 
further analyses 1 58-9 
interpreting 1 54 
null hypothesis test 1 58 
rate ratio, odds ratio and 243, 448-9 
regression analysis of 2 1 1- 1 2  
risk d ifference and 1 54-5 

risk sets 277, 287, 290 
robust standard errors 343, 353-4, 356, 359-60, 

366 
robustness 54 
ROC curve 432-3 

sample 9 
sample mean 38-9 
sample proportion 1 38 
sample size I 0 

determination 4 1 3-28 
adjustment for clustered designs 423-4 
adjustment, other ( loss to follow-up, 

interaction, confounding) 423 
formulae 4 1 7-23 
principles 4 1 3- 1 7 
table of formulae 420-1 

sampling distribution 3 1 ,  39, 4 1 ,  59-60, 1 5 1 -2 
sampling error 3 1  
sampling scheme 

on basis of time 4 1 0  
frame 409 
multi-stage or cluster 356, 4 1 0  
simple random 409 
stratified 4 1 0  

systematic 409 
two-stage 4 1 0  

sampling variation 4 ,  9 ,  38-4 1 ,  59, 1 39, 1 5 1  
sandwich variance estimate 354 

see also robust standard errors 
scatter plots 26-9, 87 
score 3 1 2  
score test 309, 3 1 1 - 1 2  
score variance 3 1 2  
screening tests 43 1 
second moment 1 1 0 
selection bias 429 
sensitivity 430-1 
Shapiro-Wilk test 1 1 1 , 1 1 2 
sign test 345 
significance level see ?-value 
significance (hypothesis) test 7 1 -3 

see also ?-value 
skewed distribution 20, 1 20 
skewness I 09- 1 0  
slope o f  the line 88 
small study effects 384 
sources of heterogeneity 38 1 
Spearman's rank correlation 345, 349-50 
specificity 430-1 
square root transformation 1 25 
standard deviation 3 1 ,  35-7 

calculating from a frequency distribution 
37-8 

interpretation 37 
of the points about the regression line 9 1  
standard error 38-4 1 ,  254, 302, 305 
of d ifference between two means 60 
of difference between two proportions 1 52 
of log OR,1n1 1 83 
of log proportion 1 57 
of log ra le ratio 24 1 
of log risk ratio 1 55, 1 57 
of log R RMH 246 
of mean 39, 5 1  
o f  proportion 1 43 
of rate 237 
robust 343, 353-4, 356, 359-60, 366 
of standard ized proportion 266 
of standardized rate 266 

standard normal deviate (SND) 45, 62 
see also z-test 

standard normal distribution see normal 
distribution 

standard population 263 
standardization 263-7 1 

direct 264-7 
indirect 264, 268-7 1 

standardized 
means 264 
mortality (or morbidity) ratios (SMRs) 264, 

268-70 
residuals 1 1 5 

step function 2 1 ,  278 
stepwise selection procedures 341 
stereotype model 2 1 3  
strata 1 80, 205, 4 1 0  
stratification 1 29, 1 80-3, 225, 243 



Student's I distribution see I distribution 
subgroup analyses 467 
sum of squares 8 1  

regression 96 
residual 8 1 ,  84, 96, 1 1 1  
total 96 

supported ranges 300-1 
see also l ikelihood ratio 

survival analysis 225, 226, 272-86 
choice of time axis 290-3 
Cox regression 287-94 
parametric models 294 

survival curve 272, 275 
confidence i nterval 276, 278 
Kaplan-M eier estimate 276-8 

survival probability at lime / 277 
survival studies 225 
survivor function 272 
symmetrical distribution 20 
systematic reviews 5 ,  7-8, 372 

/-distribution 54 
percentage points of 473 
two-sided ?-values for 474-5 

1 test 
paired 69-70, 85 
unpaired 66-7 

table see contingency table 
tail see frequency distribution 
target population 1 0  
Taylor series expansion 1 57 
tertiles 25 
test dataset 342 
test statistic 62, 309 

see also hypothesis test 
general form 73-4 

third moment 1 1 0 
threshold values 1 2- 1 3  
t ime periods 261  
t ime trends, displaying 29-30 
transformations 3 1 ,  55 ,  1 1 8-28 

change of units 37 
choice of 1 25-6 
Fisher's 95-6 
logarithmic I 1 3, 1 1 8-24, 3 1 2  
power 1 25 
reciprocal 1 25 
square-root 1 25 
z-scores 45, 49, 1 1 8 ,  1 26-8 

transformed variable 1 57 
treatment group 1 4, 58, 72, 1 48 

see also exposure variable 
trend lest 258 

see also dose-response relationship 
two-sided P-value 63, 73 
two-stage sample 4 1 0  
type I & T l  errors 425 

unbalanced design 85 
unexposed (baseline) group I 04, 1 98, 256 
uniform distribution 2 1  
unimodal distribution 20 
univariable analyses 46 1-2 

Index 501 

see also crude association 
unpaired r test 66 
untransformed variable 1 57 
upper quart ile 23 
upper tai l  of the distribution 20 

vaccine efficacy 1 50 
validity 

x1 test for 2 x 2 table 1 68-9 
external 399 
internal 400 
Mantel-Haenszel methods 1 85 
McNemar's x1 test 2 1 8  

variability, underlying 429 
variable 1 0, 35 

displaying association between two 25-9 
outcome cf exposure 1 3- 1 4  
types of 1 0- 1 3  

variance-rat io test 8 1  
variation 

between-cluster 363 
between-person 69 
extra-linear 33 1 
sampling 4, 9, 38-4 1 ,  59, 1 39, 1 5 1  
within-cluster 363 

Wald test 1 95, 309, 3 1 0- 1 1 ,  3 1 3  
c f  l ikelihood ratio tests 3 1 3- 1 4, 3 1 8- 1 9  

Weibull models 294 
weighted average 1 80, 265, 375 
weighted kappa statistic 437 

l ink between intraclass correlation coefficient 
and 439 

Welch test 67 
Wi lcoxon matched pairs signed rank test, critical 

values 479 
Wilcoxon rank  sum test 347-9 

critical ranges 480-1 
Wilcoxon signed rank test 344-7 
within-cluster variation 363 
within-person differences 69 
Woolrs formula 1 64 

x-variable 1 4  
see also exposure variable 

y-variable 1 4  
see also outcome variable 

Yates' continuity correction 1 68 

= statistic 254 
=-score 45, 49, 1 1 8 

reference curves and 1 26-8 
=-test 

for di fference between two means 6 1 -3 
for difference bet ween two proportions 1 52-3 ,  

2 1 6  
for odds ratio 1 64 
for population proportion with a particular 

value 1 44-6 
for risk ratio 1 58 
for rate ratio 242-3 
see also Wald lest 



SUMMARY GUIDE TO METHODS OF ANALYSIS: 1 1  
BINARY OUTCOME VARIABLE 

Single exposure group 

Proportion, w ith confidence interval 

Test that the proportion has a particu lar value 

Odds, w ith confidence interval 

Two exposure groups 

Measures of exposure effect: 

Difference between proportions (risk difference) 

Risk ratio 

Odds ratio 

x2 test for 2 x 2 tables 

Exact test for small samples 

Logistic regression 

More than two exposure groups 

x2 test for r x 2 tables 

Logistic regression w ith indicator variables 

Ordered or numerical exposure variable 

x2 test for trend 

Logistic regression 

Multiple exposure variables (control of confounding) 

Mantel-Haenszel method 

Logi stic regression 

Regression analys i s  of risk ratios 

Direct standardization of proportions 

Pai red or matched measurements 

Comparison of two proportions 

Odds ratios and McNemar's x2 test 

Conditional logistic regression 

Section 

1 5 .5 

1 5 .6 

1 6.7  

1 6.3  

1 6.4, 1 6.5 

1 6.6, 1 6.7  

1 7 .2 

1 7 .3 

1 9.2 

1 7.4 

1 9.4 

1 7 .5 

1 9.5 

1 8 .4 

20.2 

20.4 

25.2 

2 1 .2 

2 1 .3 

2 1 .5 

CATEGORICAL OUTCOME VARIABLE WITH MORE THAN TWO LEVELS 

x2 test for larger tables 

Multinomial logistic regression 

Ordinal logistic regression 

(Continued from inside front cover) 

1 7 .4 

20.5 

20.5 



SUMMARY GUIDE TO METHODS OF ANALYSI S :  I l l 
RATES A N D  SURV I VA L  TI M ES 
Longitudinal data: Key concepts 

Calculat ing periods of observation 

Rates 

Survival  analysis 

Single exposure group 

Sect ion 

22.2 

22.3 

26.1 

Con fidence i n terval for a rate 2 2.6 

Survival analysis 
Li fe table (grouped surv i val t i mes ) 26.2 
Kaplan-Meier esti mate of the surv i val curve ( ex act surv iva l  t i mes)  26.3 

Two exposure groups 

Methods based on rates 

Rate d i fference 

Rate rat io 

Poisson regression 

S urvival analysis  

Hazard rat io  ( l og rank test) 

Cox ( proport ional hazards) regression 

Exami n i ng the proport ional hazards assumption 

More than two exposure groups 

2 3 . 2  

2 3 . 2  

24. 2  

26.5 

27.2 

26.4. 27.3 

Methods based on rates: Poisson regression with i ndicator variables 24.4 

Su rvival analysi s :  Cox ( proport i onal hazards) regression w i th 27.2 

ind icator variables 

Ordered or numeri cal exposure vari able 

Methods based on rates: Poisson regression 

S urv ival analys is :  Cox ( proport ional hazards) regression 

Multi ple exposure var i ables (control of confounding) 

Methods based on rates 

Mantel-Haenszel method 

Poi sson regression 

D i rect standard izat ion 

indirect standard ization 

S urvival analys is  

Cox (proport ional hazards) regression 

24.4 

27.2 

23.3 

24.5 

25.2 

25.3 

27.2 



Essential Medical Statistics 

Esse,,tial Mtd1ca/ Statistics is• classic amongst medical 
statisticians. An introductory textbook, ii presents 
statistics with a clarity and logic that demystifies the 
subject, while providing a comprehensive coverage 
of advanced as well as basic methods. 

The second edition of Ess<!ntlal Mtdical Statistics 
has been comprehensively revised and updated to 
include modern slalisllcol methods ond modern 
approaches to statistical analysis, while retaining 
the approachable and non-mathema tical style of 
the first edition. The book now includes htll coverage 
of the most commonly used regression models, 
multiple linear regression, logistic regression, Poisson 
regression and Cox regression, as well as a chapter on 
general issues In regression modelling. In addition, 
new chapters introduce more advanced topics such as 
meta-analysis, likelihood, bootstrapping and robust 
standard errors, and analysis of clustered data. 

Aimed al studenlS of medical statistics, medical 
researchers, public heahh practitioners and practising 
clinicians using statistics in their daily work. the book 
is designed as both a teaching and a reference text. 
The formol of the book is clear with highlighted 
fom>ulae and worked examples, so that all concepts 
are presented in a simple, practical and easy·lo
understand way. The second edition enhances the 
emphasis on choice of appropriate methods with new 
chapters on strategics for analysis and measures or 
association and impact. 

£sStntial Mtdical Statistics is supported by a 
website nt www.blackwellpublishing.com/ 
usentialmedstalS. This useful online resource 
provides statistical dataselS lo download, 
further reading and future updates. 

Reviews o f  the first edition 

'This book is a well-written and easily readable 
Introduction to statistical methods.' 
/011ma/ uf tlir Royal Statistical Sodtty 

'The breadth or coverage or the book Is 
cxcell�nt ... a rather different approach to 
leaching medical •lalislics.' Statistics 111 Mtdici11t 

'The most readable book that I have yet 
dbcovcred in the topic' 
Comm1m1ty ltralt/1 Studies 

'Thi� book Is clearly presented and e.isy to 
underst.1nd, with realistic medical examples, 
and written by an experienced medical 
statistician ... It has much to recommend ii.' 
British Mtdicat /01mial 
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Medic•I Statistics at a Glance 
A. Petrie & C. Sabin 
2000, 144 pages, 64 illustrations 
978 0 6320 5075 8 

Stalislical Methods in Medical Research 
P. Armitage, C. Berry & ). N. S. Matthews 
Fourth edition 2001, 832 pages, 100 illustrations 
978 0 6320 5257 8 

lnlerprelalion and Uses of Medical Statistics 
L. Daly & C. Bourke 
Fifth edition 2000, 583 pages, 73 illustrations 
978 0 6320 4763 5 
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